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Abstract—We present a visual analytics framework, CMed, for exploring medical image data annotations acquired from

crowdsourcing. CMed can be used to visualize, classify, and filter crowdsourced clinical data based on a number of different metrics

such as detection rate, logged events, and clustering of the annotations. CMed provides several interactive linked visualization

components to analyze the crowd annotation results for a particular video and the associated workers. Additionally, all results of an

individual worker can be inspected using multiple linked views in our CMed framework. We allow a crowdsourcing application analyst to

observe patterns and gather insights into the crowdsourced medical data, helping him/her design future crowdsourcing applications for

optimal output from the workers. We demonstrate the efficacy of our framework with two medical crowdsourcing studies: polyp

detection in virtual colonoscopy videos and lung nodule detection in CT thin-slab maximum intensity projection videos. We also provide

experts’ feedback to show the effectiveness of our framework. Lastly, we share the lessons we learned from our framework with

suggestions for integrating our framework into a clinical workflow.

Index Terms—Crowdsourcing, medical imaging, virtual colonoscopy, lung nodules, visual analytics
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1 INTRODUCTION

THE prevalence of non-invasive imaging techniques such
as computed tomography (CT) and magnetic resonance

imaging (MRI) has significantly increased the amount of
patient data available to radiologists for interpretation. Dou-
ble reading (two or more radiologists interpreting the same
examination), computer-aided detection (CAD), and visuali-
zation techniques have been proposed to facilitate interpreta-
tion and expedite the decision-making process for the
radiologists. Due to a lack of resources, double reading is not
normally used in clinical practice. CAD algorithms can still
miss life-threatening cancerous lesions, and it is mandatory
to keep physicians in the loop while looking for anomalies in
patient scans.

Crowdsourcing seeks to engage the general masses in
innovative ways and solicit their inputs in solving diverse
problems. Previous studies have shown that most non-expert
crowd users (workers) are forthright in their intentions [1].
Crowdsourcing has shown promise in medical annotation
tasks [2]. These attempts open up avenues to incorporate
crowdsourcing as an additional tool along with CAD, double
reading, etc. in the clinical workflow to assist radiologists in
the critical task of abnormality screening.

There is little prior work on studying the performance of
crowd workers in medical annotation tasks in detail. Some
preliminary insights suggest that there is a task dependent
bias in crowdsourcing [3], and thus crowd workers might be
good at detecting anomalies in some videos but not all. Addi-
tionally, since not every worker produces good quality

annotations (worker’s bias), one needs to filter out spammers
to obtain good results [4]. Moreover, previous work has
shown that workers’ behavior patterns can have an effect on
accuracy [5]. In order to facilitate a crowdsourcing analyst/
developer in designing a better crowdsourcing application
based on previous crowdsourced annotation data, the worker
and task-dependent biases and worker’s behavior patterns
need to be analyzed.None of the previous tools for visualizing
crowdsourcing data [5], [6], [7] meet all these requirements
and hence, we present CMed for observing patterns and gath-
ering insights into crowdsourced medical data, in detail not
previously possible. We also provide lessons we learned from
designing our framework and exploring the output of CMed.
Based on the insights fromCMed, future crowdsourcing stud-
ies can be designed for optimal output from the workers. We
also suggest how the output of our framework integrates into
a clinical workflow.

CMed is a visual analytics framework used to visualize,
classify, and filter crowdsourced clinical data (Fig. 1). More
specifically, we use the ground truth from medical experts,
crowd annotations, and the logged events of the crowdwork-
ers as our source of input. We compute the accuracy of the
crowd annotations and cluster these to display (in a compact
view) how good the workers are. We also extract each work-
er’s logged events and cluster these to observe the effect of
workers’ behavior patterns on the quality of their video anno-
tations. We offer several interactive linked visualization
components for presenting different aspects of crowd annota-
tions. The target users of CMed are crowdsourcing analysts/
developers who are responsible for designing crowdsourcing
applications andmanagingworkers formedical data.

The main contributions of this paper are summarized as
follows:

� Weprovide an interactive visual analytics framework
to visualize, classify, and filter crowdsourced clinical
data, helping developers understand the crowd,
improve their current crowdsourcing framework,
and design future crowdsourcing framework.

� We offer a set of visualization techniques to support
exploring different aspects of crowd annotations.
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� We characterize a set of application-specific goals
and design requirements derived through discussion
with medical experts and previous crowdsourcing
studies.

� We demonstrate the efficacy and effectiveness of our
framework with two case studies: (1) polyp detection
in virtual colonoscopy (VC) videos, and (2) lung
nodule detection in CT thin-slab maximum intensity
projection (MIP) videos.

� We provide guidelines and lessons we learned from
our framework, as well as suggest how to integrate
our framework into a clinical workflow.

2 RELATED WORK

Crowdsourcing approaches are popular in various domains
such as image classification and labeling and video annota-
tions. Even though most workers are honest and diligent,
someworkers are dishonest and/or less skilled thanothers [8].
To detect theseworkers and improveworkers’ output, several
approaches have been proposed. The most popular approach
is adding verifiable questions in a task [8]. If workers answer
those questions, they are considered honest workers. How-
ever, it is difficult to design good verifiable questions for com-
plex tasks. If verifiable questions are not well designed, some
workers can focus on the verifiable questions and cheat on the
actual questions/tasks [9]. Another approach is to aggregate
workers’ answers (crowd consensus) such as majority vot-
ing [10] and Generative model of Labels, Abilities, and Diffi-
culties (GLAD) [11]. In some cases, including our input data,
workers can annotate the same object (a polyp/nodule in our
case) on different frames, which can be relatively far apart.
Thus, we are not able to aggregate answers becausewe cannot
ascertain whether two annotations at different frames are for
the same object.

These approaches have been utilized in medical crowd-
sourcing applications. One crowdsourcing study added 5 veri-
fiable questions at the beginning, where workers identified

whether an area in an image was air, tissue, or fluid [12]. Only
workers who correctly answer at least 4 out of 5 questions can
participate in the study. Majority voting has been used to cor-
rect for low-quality work [13], where a task was to determine
whether there was a polyp or not in each video segment. In
these two studies, existing quality control methods worked
well, but they are not appropriate for complicated cases. The
reason is that aworker can focus on only the verifiable question
at the beginning of a task, or only a few skilled workers can
detect an object (missed by the majority of workers) because a
target object is difficult to be detected by novice workers. Thus,
amore sophisticated quality control approach is needed.

Inmedical applications, obtaining ground truth annotations
is difficult, so it is hard to apply deep learning approaches. In
recent years, weakly-supervised video annotations [14], [15]
have shown promising results, where only point annotations
are required. However, as shown in [15], the performance of
the algorithm can be further improved if bounding box labels
are provided. Thus, crowd annotations may be deployed for
improving such approaches.

In our CMed framework, we use crowdsourced clinical
data, where the crowd workers view videos created from
medical imagedata. There are several approaches for visualiz-
ing crowdsourced data and video-based data. Viz-A-Viz [16]
uses basic computer vision techniques to classify datasets of
human-activity from a large volume of surveillance videos
and couples the aggregated sequences with information visu-
alization components to allow for high-level human analysis.
Considering the major events in a video, 3D visualization
techniqueswere used to develop a framework for hierarchical
event representation and an importance-based event selection
algorithm to create a video storyboard [17]. In addition to
visualizing the summary of the video content, an analytics
system was introduced for interactive exploration of individ-
ual actions as well as the trajectories of moving objects, as a
space-time cube, in surveillance videos [18]. An important
visualization component for highlighting areas of interest in
video analytics is annotations. Typically, annotating each area

Fig. 1. The CMed system: (A) Timeline View displays a summary of annotations for each video. (B) Worker View shows workers’ annotation and the
corresponding event patterns. (C) Frame View presents details of selected frames. (D) Matrix View shows the correlation between users’ event
patterns and their accuracy. (E) Class View displays characteristics of worker classes based on event patterns. (F) Video View shows a selected
video, and (G) Control Panel for selecting and reordering data. Views are linked, e.g., selected frames for the top video in the Timeline View (A),
highlighted with a gray bounding box (pointed to by a red arrow), are shown in the Frame View (C), and the same selected frames are also highlighted
in the Worker View (B).
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of interest is a time-consuming step of the analysis process.
This was addressed by proposing a visual analytics approach
through an image-based, automatic clusteringmethod [19]. In
particular, they allow direct interpretation of the labeled data
by coupling annotation and analysis components usingmulti-
ple linked views. However, these works focus on analyzing a
single video or videos for a single scene and thus cannot be
used for our target crowdsourcing applications, where work-
ers view different videos and annotations on videos and
workers’ event logs should be analyzed.

Visual analytical frameworks for crowdsourced medical
applications is not a widely explored theme. To present a
framework for clustering and interpreting results from the
crowd,Willett et al. [20] proposed a system for analysts to inter-
actively examine the workers’ insight by clustering worker
explanations and capturingworkers’ browsing behavior via an
embedded web browser. Similarly, CrowdScape [5] and
Mimic [21] evaluate the quality of the workers’ answers based
on their behavior and present a visualization tool to interac-
tively explore these features, enabling users to classifyworkers.
The latter help interaction designers understand the relation-
ship between workers output and their behavior by focusing
on micro interactions. There is a visual analytics platform to
visualize crowdsourced survey data with multiple choices by
using glyphs and parallel coordinate plots [6]. Recently,
C2A [7] was developed to visualize crowdsourced medical
data, where a worker viewed twenty video segments and
answered whether a polyp is present or not in each segment.
The main difference between C2A and CMed is that the input
for C2A is a simple binary label for each video segment, while
CMed has crowd annotations and workers’ logged events as
the input.Moreover, the goal of C2A is building crowd consen-
sus, while CMed focuses on how the crowd annotates target
objects and on improving a crowdsourcing framework.

In crowdsourcing, there is a task dependent bias. For exam-
ple, workers can be good at labeling some images while they
can fail to label other images even if all images belong to the
same image category, such as galaxy images [3]. Additionally,
workers have different backgrounds, skill levels, and motiva-
tions, and these biases result in different quality for the out-
puts of their work [4]. All studies mentioned above focused
on workers’ behavior patterns or either one of these biases.
However, in our framework, a crowdsourcing application
analyst can explore all these elements (user behavior pattern
analysis, task dependent bias, and workers’ annotation his-
tory), which were offered separately in previous work. More-
over, to the best of our knowledge, there is no visual analytics
framework to explore crowdsourced medical data, where the
crowd annotates target objects such as polyps/nodules in vid-
eos. Our CMed platform enables a crowdsourcing application
analyst to observe patterns and gather insights into crowd
annotations in the crowdsourced medical data, helping the
analyst to design better crowdsourcing applications.

3 BACKGROUND AND INPUT ANNOTATIONS

Our target applications are virtual colonoscopy and lung
nodule detection, each of which requires data generation,
inputs for the crowdsourcing platform, and a process to
obtain crowd annotations.

3.1 Background
Virtual Colonoscopy Videos. Virtual colonoscopy (VC) is a non-
invasive procedure for detecting polyps, the precursors of
colon cancer, inCTdata. A radiologist flies through a 3D colon

(reconstructed from abdominal CT data) and inspects the
colonwall for polyps, characterized by bumps on thewall. On
average, a complete inspection of the colon in two different
patient orientations (e.g., supine and prone) from rectum to
cecum and back takes approximately 15-30 minutes to per-
form. In our previous studies,we have shown that this tedious
bump detection task can easily be relegated to non-expert
workers [13]. Note that optical colonoscopy is still the gold
standard for colorectal cancer screening in many countries
and VC costs are usually not covered by health insurance,
though this is changing due to the higher patient compliance
ratewith VC and themany advantages of VC.

Lung Nodule Detection. Radiologists interpret 2D chest CT
scans to look for lung nodules, the precursors of lung can-
cer, characterized by isolated “spots” not connected to the
prevalent vascular structures. As shown in our lung nodule
detection study [22], maximum intensity projection (MIP)
videos of these 2D chest scans can help clearly delineate
these “spots” for non-expert workers.

Crowdsourcing. In crowdsourcing applications, there are
three types of workers [9]: good, bad, and ugly workers. Both
good and bad workers complete a task honestly. A good
worker understands the goal of a taskwell and has a good skill
to complete a task. However, a bad worker has a poor skill or
misunderstands the goal of a task, so his/her output is not as
good. An ugly worker cheats on a task, e.g., randomly answer-
ing a task. To filter out ugly workers, one of the common tech-
niques is adding verifiable questions in a task (gold standard
questions) [8]. If a worker answers the questions correctly, we
assume that he/she is not an ugly worker. We added quality
control objects to our input data and asked workers to detect
those objects as gold standard questions.

3.2 Medical Data Annotations
In this paper, we use crowdsourced annotation data from
our two previous studies [22], [23]. In the first work, we
used VC videos, and the second work used lung CT videos.
The goal of each study was to detect target objects (polyps
for VC videos and lung nodules for lung CT videos).

VCVideo Generation.VCfly-through videoswere generated
using the commercially available FDA-approved Viatronix
V3D-Colon VC system [24]. Four centerline fly-through vid-
eos were automatically generated for each patient VC dataset
(from rectum to cecum and from cecum to rectum in both
supine and prone orientations). The videos were captured at
15 framesper second (fps)with a resolution of 256� 256 pixels
and a 90 degree field-of-view. Anonymized datasets from 14
patients were used, generating a total of 56 VC videos. The
datasets contained both large (> 5 mm) and small (< 5 mm)
sized polyps. There were a total of 33 polyps, which included
10 polyps of less than 5 mm in diameter. We generated the
ground truth annotations by marking polyps in the videos
based on the expert radiologists’ VC reports.

Lung Video Generation. Lung CT videos were generated
by rendering videos of overlapping thin-slab MIPs (TS-
MIPs) of CT slices through each half of the patient’s left and
right lungs. MIP is a projection of the voxel with the maxi-
mum intensity value along rays traced from the viewpoint
to the image plane [25]. For this paper, we used 15 videos
from anonymized chest CT patient scans from the publicly-
available LIDC database [26], containing 45 nodules. Of
the 45 nodules, 19 were �4 mm, 8 were > 4 and �6 mm, 3
were > 6 and �8 mm, 5 were > 8 and �10 mm, and 10
were �10 mm in diameter. We generated the ground truth
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by marking lung nodules based on 5 expert radiologists’
manual annotations.

Crowd Annotations for Both Datasets. To obtain crowd anno-
tations for the VC and lung CT videos we used a web inter-
face, VATIC [9], for both datasets on the Amazon Mechanical
Turk platform. When workers first select this task, for each
video, a video is downloaded in the background. In themean-
time, they are provided with brief instructions including the
main objective of the study, how to use the system, and some
example target objects (polyps for VC videos and lung nod-
ules for lung videos). After the video download is finished,
and the workers have read the instructions, the workers can
play, pause, and rewind the video at will. Additionally, they
can step to the previous or next frame.All of these interactions
are done by clicking corresponding buttons. We added qual-
ity control objects (5 smileys for VC videos, 1 gorilla for lung
videos) in each video to help detect spammers. When the
workers find a target/quality control object, they first label it
as a target or quality control object and then annotate the
object by drawing a rectangle around it.We logged all interac-
tion events and stored all annotation information. A worker
was not allowed to complete the same taskmultiple times, but
was allowed to completemultiple different tasks/videos.

4 CMED FRAMEWORK

In this section, we describe our design requirements con-
cerning CMED and an overview of our framework.

4.1 Design Requirements
Based on our preliminary work and previous crowdsourcing
studies [22], [23], we characterized several design require-
ments to satisfy the following goals: G1) improve training
cases based on exploring false positives of workers, G2)
explore missed polyps and see why workers missed them,
G3) explore the effect ofmissing quality control objects on sen-
sitivity and type of worker, G4) improve the current interface
based on analyzingworkers’ event logs.

R.1 Compare the ground truth and workers’ annotations
(G1,G2). Even though a video contains target objects, work-
ers sometimes cannot find them because they are too small,
only appear in a few frames, or appear similar to back-
ground structures. Additionally, workers might also anno-
tate objects which are not target objects, but look like target
objects. Thus, an analyst needs to understand the character-
istics of crowd annotations by comparing details of crowd
annotations to ground truth annotations. We try to answer
the following questions: How many target objects (polyp/nod-
ule) per video did workers find/miss? Did workers mark an object
that was not a target object?

R.2 Reveal the details of workers’ annotations and event
logs for each video (G1,G2). The main difference between a
bad worker and an ugly worker is that an ugly worker
marked a region where there is no object that looks like a
target object. An analyst can see whether a worker is a bad
or ugly worker by exploring individual annotations from
him/her. Additionally, a worker’s event logs can show the
type of worker. By visualizing this information, we could
answer the following questions: How many target objects did
a worker miss? What kinds of objects did a worker annotate? How
did a worker annotate/explore a video? Is he/she an ugly worker?
What did an annotated object look like in a video?

R.3 Reveal the overall quality of each worker’s output
and his/her event patterns for multiple tasks (G3). In order
to exclude ugly workers, workers in our input data were

asked to detect quality control objects. However, some
workers may be good at detecting target objects, but miss
some quality objects. Workers can annotate multiple tasks/
videos and they can be good workers even if they missed
several target objects and/or if they are better than other
workers. A worker can be a good worker if the sensitivity of
the worker is higher than the overall sensitivity of all work-
ers for multiple tasks. Additionally, there might be a learn-
ing effect on their results throughout tasks. The workers
also can change their interaction behavior to annotate target
objects depending on a video. Event patterns refer to how a
user annotates an object (e.g., only using play and stop but-
tons, or never rewinding a video). By visualizing this infor-
mation, we could answer the following questions: Does a
worker have similar event patterns throughout multiple tasks? Is
the accuracy of a worker’s annotations changed throughout tasks?
Is the sensitivity of the worker higher than the overall sensitivity
of all workers for multiple tasks? Does a worker need to be
excluded if he/she was an ugly worker based on the number of
detected quality control objects in a task?

R.4 Discover the correlation between workers’ event pat-
terns and the sensitivity of corresponding annotations for all
datasets (G4). Theremight be a good strategy to annotate target
objects in videos from medical image data. If there is such a
strategy, it might improve the sensitivity ofworkers by provid-
ing workers with only these interactions (e.g., if a worker
rewinds a video, he/she may perform better than a worker
who just plays a video and annotates target objects). For exam-
ple:Doworkers’ event patterns affect the sensitivity of their answers?
Which event pattern/class is best/worst for each type of target objects?

4.2 CMed Overview
CMed is a web-based application developed under the
framework of Express.js. Annotation data as our source of
input is stored in MySQL. The data preprocessing module
was developed in JavaScript, and the data analysis module
is developed in JavaScript and Python with OpenCV. The
visualization module is implemented in D3.js. Our CMed
framework consists of three major components (Fig. 2): data
preprocessing, data analysis, and data visualization.

4.2.1 Data Preprocessing

In order to analyze and visualize the input annotation data,
we need to extract and classify data as follows:

Fig. 2. Overview of the CMed framework pipeline. We first collect both
crowdsourced and ground truth annotations. We then extract the work-
ers’ logged events and annotated features and compute the detection
rate of the target objects. Next, we incorporate several approaches to
cluster the workers’ annotations and their events. Lastly, we visualize all
the data for interactive exploration.
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Logged Events. In the crowdsourced annotation data that is
the source of our input, we logged the types of events that
would occur as the workers performed the task: playing and
pausing a video (Play), stepping to a next/previous frame
(Next/Previous), rewinding a video (Rewind), and events
related to annotations (Draw) such as drawing, resizing, and
dragging and dropping a rectangle with timestamps. We first
calculate the time for each task per worker (Time) by using the
difference between the timestamp on the last event and the
timestamp on the first event performed by the worker after
the instructions have been read and the video has finished
loading. We then align the workers’ annotation data with the
logged events based on the timestamps of events.

Detection Rate of Target Objects. We find all ground truth
annotations present in the same frame as theworkers’ annota-
tions and then used the Dice Similarity Coefficient (DSC) [27]
to determine whether or not a worker annotation W corre-
sponds to an actual ground truth annotation T for both target
objects and quality control objects. The DSC is calculated as

DSCWT ¼ 2 W \ Tj j
Wj j þ Tj j : (1)

A worker annotation is considered a match to the ground
truth if DSCWT > 0:5. Since the ultimate goal of crowd-
sourced medical data is to find a suspicious area and show
it to a radiologist, even a partial match can be a good indica-
tor to show a suspicious area.

Workers’ Annotation Features. Based on the accuracy of the
workers’ annotations, we store matching ground truth tar-
get objects and the centroid of the annotated regions. We
also calculate the number of missed quality control objects
for each worker.

Ground Truth Annotation Features. Unlike the workers’
annotations, where a polyp/nodule was only annotated in a
single frame, the ground truth annotations per target object
were present in multiple frames. To analyze the characteris-
tics of these annotations in our data analysis component, we
first compute the number of annotated frames. We then
compute the average area size Ai and ratio Ri of annotations
J per target object i as following:

Ai ¼
X

j2J
ðwij � hijÞ=NJ; Ri ¼

X
ðwij=hijÞ=NJ; (2)

where wij; hij are the width and the height of an annotation
j, respectively, andNJ is the number of annotations J .

4.2.2 Data Analysis

We analyze preprocessed data to perform several tasks (R.2-
4). Additionally, we detect an ugly worker by calculating that
a worker missed a certain number of quality control objects,
where this number is selected interactively by an analyst.

Clustering Workers’ Annotations. In our crowdsourced anno-
tation data, there are many annotations for the same object.
Thus, we need to cluster these annotations to aid an analyst in
analyzing the annotations (R.2). In our data, each annotation
can be matched to annotations in the same frame or the closest
frame with high probability. Thus, we first search annotations
in the same frame and compute whether they are matched or
not. We then compared annotations in the current frame to
annotations in the closest frame. To determine whether they
are matched or not, we used two approaches. The first method
is extracting scale-invariant feature transform (SIFT) fea-
tures [28] within an annotated area and then using brute-force
matching. SIFT features are scale, orientation/rotation, illumi-
nation, and (partially) viewpoint invariant. SIFT consists of
four steps: 1) feature point detection, 2) feature point localiza-
tion, 3) orientation assignment, and 4) feature descriptor gener-
ation.We chose the SIFTmethod because it is a current state-of-
art method and works well for our input data [29]. We experi-
mented with various annotation sizes. If an annotation is too
small (the area of an annotation� 900 pixels in our target data-
sets), matching using SIFT features sometimes fails to find a
match. Therefore, we use another approach using the centroids
and frame distances of two annotations i and j as follows:

Matchi;j ¼ kCi � Cjk < a and jFi � Fjj < b; (3)

where Ci; Cj are the centroids and Fi; Fj are the frame num-
bers of i and j, respectively, and a and b are user-defined
constants. We empirically set 10 for a and 5 for b in our case
studies. We use OpenCV for this calculation.

Clustering Workers’ Logged Events. To compare workers’
event patterns and discover the effects of workers’ event
patterns (R.2-4), we need to cluster the logged events from
the annotation tasks. We first create a vector containing
the events (Play, Next/ Previous, Draw, Time, Rewind) for
each worker and then run a dimension reduction method,
t-SNE [30] with the euclidean distance similarity metric to
preserve the local and global structure of the data. To cluster
workers’ logged events, we provide an analyst with t-SNE to
find the number of distinct event classes (5 clusters in our
case). After setting the number of the classes, we use single-
linkage clustering [31] to obtain event classes automatically,
which is a hierarchical agglomerative clustering method. For
our data, our clustering method successfully detects these
five classes (Fig. 3). We tried k-means and hierarchical clus-
tering, but the latter method showed clusters more clearly in
our target dataset. Other clustering methods [32] may per-
form better for other datasets.

5 CMED DESIGN

Based on our design rationales (R.1-4), we designed our
framework to contain several linked views. The Timeline View
provides an overview of workers’ and ground truth annota-
tions. To see details of these annotations, we offer the Frame
View, which shows details of selected frames from the Time-
line View. In the Worker View, we provide two types of infor-
mation: each workers’ annotations and the event patterns for
each video, along with a summary of this information for all
completed tasks by each worker. The Class View and the
Matrix View aid a crowdsourcing application analyst in
understanding the correlation between workers’ event classes
and their corresponding accuracy. The Video View allows a
crowdsourcing application analyst to investigate the context
of a target object in a selected video. The main views in the

Fig. 3. Examples of clustering workers’ logged events using t-SNE and
single-linkage clustering: (a) VC datasets, and (b) lung CT datasets.
Different colors indicate different clusters.
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CMed framework are the Timeline View, Frame View, and
Worker View. The other views (TheMatrix View, Class View,
and Video View) can be hidden if they are not necessary. We
used the ColorBrewer color scheme [33] for the visual ele-
ments in each view.

5.1 Timeline View
In the Timeline View (Fig. 4), we reveal the overall annota-
tion information for each video (R.1). The Timeline View
can order videos by the name of a video, by the sensitivity
of identified target objects, and by the number of target
objects. The Timeline View consists of two parts: a summary
of annotations on the left side and annotations per frame on
the right side (Fig. 5).

The left side (a blue box in Fig. 5) displays the ratio of
annotated frames to the total number of frames in each
video by the width of a bar (Fig. 5a). At the bottom of the
bar, we display the number of target objects from the
ground truth as the number of squares, and the color of
each square indicates whether a target object is identified by
a certain number of workers (blue: detected, pink: missed);
this threshold can be interactively changed by the analyst in
our Control Panel. We also place bars at the bottom of the
squares, where the color of each bar indicates the size of
each target object. We note that the size of the blue bars for
the ratio and the colored squares may appear small, but the
purpose of these elements is only to show how small the
annotations are and whether there are missed target objects.

On the right side (a red box in Fig. 5), the x-axis is the
video timeline indicating the video frame number, and the
y axis represents the magnitude of the area of an annotation.
Annotations are shown as vertical bars with different colors
(blue for workers’ annotations and pink for ground truth
annotations). For each bar, we select an annotation with the
largest area among annotations in the same frame. The areas

of some annotations might be too small to be noticeable in
the view. Thus, we provide two modes to scale the y-axis:
area mode and normalized mode. The area mode shows the
actual area of annotations (e.g., how small an annotation is),
while the normalized mode shows the relative difference
between annotations. In area mode, the height of each bar is
scaled based on the maximum possible size of the annota-
tion (i.e., percentage of the full video frame size). In normal-
ized mode, we select the annotation with the largest area in
the video and scale the heights of the bars for that video
such that the largest area will fill the entirety of the vertical
space. Fig. 4 illustrates these two modes.

At the bottom of the x-axis, we stack horizontal bars for
each target object from the ground truth, where the width
of each bar indicates the number of frames in which the tar-
get object is visible in the video, and the color represents the
size of a corresponding target object, which was also from
the ground truth. The analyst can select specific frames by
brushing to see details in the Frame View. The selected
frames are also shown in our Video View.

On the right side (a red box in Fig. 5), we visualize only the
annotation with the largest area in the same frame; an analyst
cannot see a small target object if several targets are over-
lapped. To help view these overlapped objects separately,
selecting a square representing the target object on the left
side of the view highlights the area corresponding to that tar-
get by graying out the other ground truth annotations.

5.2 Frame View
An analyst can select specific frames in the Timeline View,
and the details of the selected frames are then visualized in
the Frame View (Fig. 6). This allows analysts to compare

Fig. 4. An example of two modes in our Timeline View: Area mode (top) and normalized mode (bottom). The two modes show the same annotations
for each video, but have different scales for the bar heights. In both modes, the x-axis is the video timeline, indicating the video frame number. Work-
ers’ annotations ( ) and ground truth annotations ( ) are shown as vertical bars. The details of the highlighted ( ) area are described in Fig. 5.

Fig. 5. Timeline view illustration. The left side displays (a) the ratio of
annotated frames to total frames in each video, (b) the number of target
objects identified ( ) and missed ( ) by workers, and (c) their size
encoded in the bar colors. On the right side, stacked horizontal bars at
the bottom of the x-axis show the ground truth target objects, where bar
width indicates the number of frames in which the target is visible and
color represents target size.

Fig. 6. An example of our frame view. Each line represents a target
object; the x-axis indicates the video frame number and the y-axis is the
area of the annotation. Representative annotations (dots on the lines)
and images are illustrated by clustering workers’ annotations within the
same frame and across frames, respectively. We can display ground
truth and/or a representative annotation of a selected point on a line.
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details of the ground truth and the workers’ annotations (R.1,
R.2). Similar to our Timeline View, there is a chart, where the
x-axis indicates the video frame number and the y-axis the
area of each ground truth annotation. Each line represents
each target object that is present within the selected frames,
and the color of each line indicates the size of each target,
which is the same as the Timeline View. In order to display
annotations from the workers, we first compare all annota-
tions in the same frame by the DSCmentioned earlier. If there
are similar annotations, we group them together and store the
annotation with the largest area as a representative of
the annotations. We then visualize the representatives of the
grouped annotations, where each dot’s color indicates it is
a representative (blue dot) or selected ground truth (pink dot)
annotation. The size of each dot (blue dots near the red line as
a representative annotation in Fig. 6) represents the number
of annotations within the group. We use the same colors we
used in the Timeline View. Additionally, if a worker’s annota-
tion is not matched to the ground truth, we change the color
of the annotation to grey to display that it is a false positive.

We provide the image of a frame with an annotation to
show what an actual annotation looks like in a video frame
(Fig. 6). We use the clustering method described earlier to
cluster worker annotations in neighboring frames since the
view can be too cluttered if we display frames for all repre-
sentative annotations. For each cluster, we display only the
annotation with the largest area. We link these clustered
annotation images to the corresponding dots for representa-
tive annotations. Additionally, the analyst can view a repre-
sentative annotation by selecting a dot or view a ground
truth annotation by clicking any position along the line.

Circles with unique IDs are placed at the top of the view to
indicate the workers who completed the selected video. These
numbered circles are linked to the clustered annotations to
enable the analyst to understand whose annotations are in a
cluster. When an analyst selects an annotation circle, the
workers who made the annotation are highlighted. We used
an edge bundling algorithm [34] to reduce visual clutter
between clustered annotations and representative images and
betweenworker ID circles and representative images.

5.3 Worker View
In the Worker View, we visualize two types of information
(Figs. 7, 8). The first type is details of the workers’ annota-
tions and logged events for each video. In this type, we can
discover workers’ event patterns and their accuracy for
each video (R.2). The second type of information is overall
annotations and event patterns of multiple tasks for each
worker. This type allows analysts to reveal each worker’s
event patterns and the sensitivity of his/her annotations for

multiple tasks (R.3). The Worker View for each worker can
order workers by the date they completed the first task, by
the averaged accuracy of tasks they completed, and by the
number of completed tasks. Similar to our Timeline View,
the Worker View both for each video and for each worker
consists of two parts: a summary of the result of each
worker and details of the result. We note that the Worker
View for each video is one of our main views, and the
Worker View for each worker is used when we need to
explore each worker’s behavior in details.

Worker View for Each Video. The right side shows each
annotation by a worker at the top and the worker’s logged
events at the bottom (Fig. 7). More specifically, at the top of
the view, each box indicates an annotation, and a filled rect-
angle inside the box represents the area and position of the
annotation. The outside box has the same aspect ratio as the
input video frame. The color of the outside box represents
the type of the worker’s annotation (true positive or false
positive). At the bottom of the right side, we visualize a
worker’s logged events by using red upside-down triangles
(rewinding) and horizontal bars, where the color of each bar
indicates the event type (e.g., playing and drawing) and the
width of each bar shows the duration of each event.

On the left side of the view, we place squares to display the
number of identified and missed target objects by a worker
and the size of the corresponding target objects, in the same
way as the Timeline View. Additionally, we show the number
of detected quality control objects beneath the bars for the
sizes of target objects. A circlewith eachworker’s ID is colored
to indicate the class of a worker’s logged events. The color is
assigned by the result of clustering workers’ logged events in
our data analysis component. This color for each event class is
used for the same class in other views.When an analyst selects
an annotation, we highlight the corresponding frame in the
Timeline View and the corresponding annotation in the
FrameView.

Worker View for Each Worker.We visualize overall informa-
tion regarding annotations from the same worker in a single
group by displaying a worker ID with a matrix visualization
(Fig. 8). In the matrix visualization with three rows, each col-
umn indicates a video that theworker completed. The color of
the first and the second rows show the sensitivity of a worker
and the overall sensitivity of the crowd consensus for each
video, respectively. The color of the third row represents the
number of quality control objects detected by the worker.
Below this, a fourth row displays the event class of the worker
for each completed videos, where the same colors used in the
Worker View for each video are assigned for the event class.

When an analyst selects a square in the view, we high-
light all squares in the same column and focus on the corre-
sponding video in the Timeline View. When an analyst
hovers over a square, it shows brief information about the
corresponding video as a tooltip.

Fig. 7. Illustration of our worker view for a video. The left side displays a
summary of a worker’s annotations such as (a) the number of identified
and missed target objects by each worker and (b) the size of the objects.
The right side shows details of the worker’s annotations and logged events.

Fig. 8. Illustration of our worker view for a worker. For each video the
worker annotated, we display the sensitivity of a worker (1st row), the crowd
consensus sensitivity (2nd row), the number of quality control objects
detected by theworker (3rd row), and the worker’s event class (4th row).
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5.4 Class View
In the Worker View, we assign a color to each event class by
clustering the workers’ events. An analyst cannot under-
stand the characteristics of each class without any descrip-
tion, which is essential for discovering the correlation
between the workers’ event patterns and the sensitivity of
their answers (R.4). To show the characteristics of each class,
we provide the Class View (Fig. 9). In the Class View, we
use a grouped bar chart, where each group shows each
event used for the clustering. Within each group, we visual-
ize the averaged values of the event in each class.

5.5 Matrix View
Our Worker View shows the correlation between event clas-
ses and the sensitivity of annotations for each video or each
worker. To discover the correlation between event classes and
the sensitivity of corresponding annotations for all videos
(R.4), we provide the Matrix View (Fig. 10). In the Matrix
View, each column indicates a different event class, and each
row represents a predefined attribute of a target object, such
as its size or the number of frames it spans. The color of each
cell in the view illustrates the sensitivity of the corresponding
column and row.

5.6 Video View
Other views focus on the workers’ and ground truth annota-
tions. However, in cases such as VC videos, workers view a
video where a virtual camera moves quickly at sharp bends
along the navigation path and slowly when the navigation
path is straight. Thus, understanding the context of an annota-
tion in the video is useful to analyzemissed target objects and
false positive objects (R.2). For this purpose, we provide the
VideoView (Fig. 1 F), where an analyst views a selected video.

6 CASE STUDIES

We demonstrate the effectiveness of CMed with two data-
sets: polyp detection in VC videos and lung nodule detec-
tion in CT thin-slab MIP videos. We interviewed a
radiologist for feedback on our CMed platform to gain
more insights. A supplementary video demonstrates how
our framework works interactively.

6.1 Virtual Colonoscopy Datasets
This study utilized VC data from 14 patients, yielding a total
of 56 VC videos (antegrade and retrograde directions in
both supine and prone scans) and thus a total of 56 unique
tasks (HITs) (Figs. 1, 4). These 14 patients contained a total
of 33 polyps, with the number of polyps per patient ranging
from 1 to 5. Each VC video was viewed by ten workers,

except for two which were viewed by eleven workers, and a
total of 125 workers participated.

We sorted the videos based on the polyp identification sen-
sitivity. We then chose one video where most workers identi-
fied a polyp, but worker 3 missed the polyp (R.1). In order to
identify whether or not he is an ugly worker, we explored his
task history and event logs (R.3). We found that in some tasks
he found all polyps, and thus he is not an uglyworker.

We also analyzed the event patterns of workers who com-
pleted multiple tasks (R.3). We first ordered workers by the
number of tasks they completed. We then inspected workers
who completed multiple tasks, and found that their perfor-
mance and sensitivity did not improve over time. One inter-
esting finding was that some workers who completed
multiple tasks detected all quality control objects in some
cases, but their sensitivity was lower than the sensitivity of
the crowd consensus for those cases. However, in other
cases, they had similar sensitivity to the crowd consensus
even when they missed one or two quality control objects.
Missing quality control objects does not necessarily mean a
worker is a bad or uglyworker.

Next, we ordered workers by the averaged sensitivity of
the tasks they completed. We found that worker 4 overall
was as good as or better than other workers in tasks he com-
pleted (Fig. 8) (R.3). He completed 15 videos and found all
polyps in 12 videos. In one task, he missed two polyps, but
he marked several items which looked like polyps but were
actually not polyps, such as segmentation artifacts (R.2).
Thus, he is not an ugly worker and he might need addi-
tional training cases to improve his sensitivity.

We also looked at a worker with overall low sensitivity.
Worker 57 detected all quality control objects, but he missed
a polyp (R.3). We explored his annotations and found that
he marked several objects which looked like polyps, but
were actually not polyps (R.2). Thus, he also needs addi-
tional training cases to improve his sensitivity.

Additionally, we explored workers’ annotations in the
Timeline View and found that there were regions where
several workers marked some objects as polyps (Fig. 11) (R.1).
However, those were not actually polyps, but objects which
looked like polyps, such as segmentation artifacts. These
objects can be added as false positive cases in a training sec-
tion to improve a worker’s ability to discriminate between
actual polyps and polyp-like objects.We also explored polyps
that appear in only a few frames of the video (R.1). Among
these polyps, some were detected by the crowd workers, but
others were not. We chose one of these polyps and found that
not only did this polyp appear in just a few frames, but it also
looked like part of a fold. For future applications, we can add

Fig. 9. Our class view shows the distribution of five events for the five
clustered event classes. Workers belonging to class 4 viewed the videos
by rarely using the buttons to step to the previous and next frame.

Fig. 10. In the matrix view, each column indicates a different event class,
and each row represents a predefined attribute of a target object. The
color of each cell in the view illustrates the sensitivity of the correspond-
ing column and row.
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this case into a training section and reduce the playback speed
of videos.

In analyzing the Class View, class 1 was the overall best for
all categories of polyps (R.4). Not surprisingly, workers in
class 1 made an increased effort to detect polyps by clicking
the buttons to step to the previous and/or next frame and
used the rewind button more frequently. They also spent
more time on completing the tasks, as compared toworkers in
other classes.

6.2 Lung CT Datasets
We used 15 videos. The videos contained a total of 169 nod-
ules with the number of lung nodules per video ranging
from 1 to 10. Each video was viewed by ten workers, and a
total of 30 workers participated.

In the Timeline View, we explored several lung nodules
that were missed by most workers (R.1). These nodules can
be added as false negative cases in a training section. Addi-
tionally, similar to the VC datasets, we found that there
were regions where several workers marked some objects
as lung nodules that were not actually lung nodules
(Fig. 12). These objects can be added as false positive cases
in a training section.

We ordered workers by the averaged sensitivity of the
tasks. We found a worker who completed three videos, but
only detected the gorilla in each video and didn’t annotate

anything else (Fig. 13) (R.3). The worker viewed the videos
several times by rewinding them (R.2). He also marked sev-
eral areas, but in the end deleted all annotations. Thus, he
might be a bad worker and require more training cases.

Most of the workers were in class 1 (R.4). One interesting
observation is that a few workers who were in class 4
detected all lung nodules which were greater than 10 mm
(Fig. 10). These workers in class 4 spent more time on com-
pleting the tasks and used the rewind button more fre-
quently than workers in other classes, but they rarely used
the buttons to step to the previous and next frame (Fig. 9).
Thus, to detect large lung nodules (> 10 mm), workers
might need only the play and pause buttons.

6.3 Expert Feedback
In addition to conducting two case studies, we also demon-
strated our system to two analysts (A1, A2) who analyze vari-
ous data, including using/generating annotations formachine
learning, and a radiologist (R) trained for VC and lung nodule
detectionwhowill use the output of the system. On a scale of 1
(novice: no experience) to 5 (expert: authoritative understand-
ing and experience), the level of expertise in interpretingmedi-
cal data for A1, A2, and R were 2, 3, and 5, respectively. First,
we showed the different interactive visual components of our
platform to them. After demonstrating each view of ourCMed
framework, they gave feedback on our CMed tool by putting

Fig. 11. Several workers marked an object as a polyp (a red box in (a)). However, that was actually not a polyp, but an object that looked like a polyp. (b)
This case can be added as false positive case in a training section to improve users ability to discriminate between actual polyps and polyp-like objects.

Fig. 12. Several workers marked some objects as lung nodules in the Timeline View. (a) However, in the Frame View. (b) We found that those were
not actually nodules, but objects which looked like lung nodules.
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forward different hypotheses whichwe tested using the above
case studies. With a brief explanation, they were able to gain
insights from each view.

In general, the feedback for CMed was positive in terms of
classifyingworkers based on their behavior patterns and find-
ing workers’ behavior patterns, what workers annotated, and
the accuracy of spammers and non-spammers.A2 andR espe-
cially liked our Frame View because it showed what workers
annotated or marked through an image with a bounding box.
A1 and R found that the Worker View for each video was
interesting because it showed the details of worker behavior
patterns, such as how much a worker used the rewind func-
tionality and how long the workers spent on each video. A2
and R mentioned that insight gained from the Worker View
from each worker was interesting because they could observe
changes in the worker’s behavior pattern even though they
were still good workers. R said, “this finding makes sense
because some radiologists spend a tenth of another radiolo-
gist’s time and find the major findings”. He expressed that
based on this insight, he can rely on someone who had good
accuracy on his/her prior tasks.

A1 andA2 liked our linked views because they can interac-
tively navigate information. They also expressed that our
framework would greatly reduce their time to generate anno-
tation. They would like to use our framework for other
domains such as scientific data, which is also a time-consum-
ing task for domain scientists. R also liked the Matrix View
because it provided him with a summary of workers, stating
that “For VC, sizable polyps can fairly reliably be detected by
someone with no training”. He expressed that based on over-
all insights obtained from our CMed system, he could use
workers’ results as a second reader, similar to a computer-
aided detection algorithm. Lastly, all participants suggested
that dynamic view configuration could be helpful since not all
views are required for different types of analyses (even
though each viewprovides complementary information).

7 GUIDELINES

In this section, we first describe design guidelines/considera-
tions for crowdsourcing applications and visual analytics for
medical crowdsourcing applications.We then suggest how to
integrate the output of CMed into a clinical workflow.

7.1 Design Guidelines/Considerations
We have learned several lessons from our framework to help
design future crowdsourcing applications and visual analyt-
ics formedical crowdsourcing applications as follows:

Quality Control. Some workers miss some quality control
objects, but have good accuracy since they focused on the target
objects. Thus,we cannot ignoreworkerswhomiss a fewquality
control objects. It would be interesting to add a visual analytics
componentwith (semi) automatic filtering of uglyworkers.

Tutorial/Training Examples. Additional training and more
examples of tricky polyps/lung nodules might help improve
the ability of the crowd in identifying polyps which look like
folds. For this purpose, we can cluster annotations from other
workers and visualize some of the representative images as
training examples.

Workers Expertise. Since some workers who completed
many tasks may perform well consistently, and understand
better than other workers, their answers may be more reli-
able than those of other workers. Thus, we can rank workers
(which should be regularly updated to prevent turning a
good worker to an ugly worker), and consider the expertise
level of a worker when compiling workers’ answers.

Different Angles of Data. For VC dataset, some polyps are
only visible from a certain fly-through. If we register differ-
ent fly-throughs and visualize corresponding parts in each
video, we can further improve the output of the framework.

7.2 Integration into Clinical Workflow
During this study and our previous studies, we held regular
discussionswith radiologists regarding how to integrate crowd
annotations into a clinical workflow. The result of our frame-
work can be integrated into a clinical workflow as a second
reader or as annotations for deep learning. As a second reader,
the clinical workflow is as follows: (1) patient CT data is
acquired, (2) VC flythrough videos are generated and
uploaded to the crowdsourcing platform, (3) crowd annota-
tions are collectedwithin 5 days, (4) analysts verify the annota-
tions via CMed, and finally (5) the radiologist first performs
VC inspection independently and then checks the verified
crowd annotations to confirm the diagnosis (second reading).
For this workflow, the radiologists we interviewed were will-
ing to bear the cost of prior crowd interpretation by letting go
of a meager fraction of their compensation, for convenience
and for a stronger corroboration of their final diagnosis.

Recently, deep learning approaches have been shown great
success inmany image processing areas such as image classifi-
cation [35] and image registration [36]. However, deep learn-
ing approaches require a large amount of training data/
images for decent performance/accuracy. Existing detection
methods in the medical domain have decent performance
(e.g., > 90% sensitivity for polyp detection [37], [38]), but
require a large amount of training data/images to improve
performance/accuracy. Collecting annotated data/images
is time-consuming and expensive, especially in a medical
domain. The possibility of using crowdsourced annotation
data for a detection task in medical images has been
shown [39], and thus the output of our framework could be
used for training data. As deep learning approaches improve
using the crowdsourced annotations, these approaches could
replace the crowd as a second reader.

8 DISCUSSION

Our case studies and expert feedback demonstrate the effec-
tiveness and efficiency of our CMed framework. However,
there are several limitations in our current framework.

Scalability. Our system follows Keim’s mantra of “Analyze
first, show the important, zoom, filter and analyze further,

Fig. 13. In the worker view for each worker (a blue box), we found that a
worker didn’t annotate anything but only detected a gorilla (blue box) in
three videos (a-c). In the corresponding Worker View for each video (a
red box), the worker viewed videos ((a) and (b)) several times by rewind-
ing them. He/she also marked several areas, but in the end deleted all
annotations ((a-c) in a red box).
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details on demand.” [40]. The Timeline View and the Worker
View for each worker allow a crowdsourcing analyst to ana-
lyze the workers’ annotations and their behavior patterns.
When the analyst orders videos/workers by a provided crite-
ria and selects a region or a video in these views, the Frame
View and the Worker View for each video show the details
of the selected region or video. When a video is selected, we
show all of the workers’ annotation information for the
selected video. However, a previous study has shown that
10-20 workers per video are sufficient to obtain high quality
output for medical data [41]. In our previous studies [22], [23],
we could achieve high sensitivity and specificity by collecting
annotations from 10 workers per video. However, if a hun-
dred workers annotate the same video, the crowdsourcing
application analyst can scroll down the Worker View to view
all of theworkers’ annotations.

Generalizability. In our approach, the size of each target
object is encoded as a color. Thus, we can cater for up to 12 dif-
ferent sizes/types of target objects [42]. In some other datasets,
there can bemore categorized sizes/types.However, this num-
ber of colors is enough for most of our potential target applica-
tions, such as detecting cysts in virtual pancreatography.

Clustering. Our current clustering algorithm determines
whether two annotations belong to the same object if they
are in the same frame or in the closest frames. Based on our
experience, most objects are not occluded by other objects in
our potential applications, such as videos from medical
images (CT or MRI). However, in VC 3D flythrough videos,
a possible sequence of events is as follows: a polyp appears,
becomes occluded by a fold, and then appears again. In this
case, we cannot cluster the annotations corresponding this
polyp into the same group. Since the purpose of our current
clustering algorithm was just to minimize the total number
of annotations, we did not address this possibility. We will
investigate a better approach for enforcing this grouping of
annotations as part of our future work.

Color Encoding. Even though our potential target users
(crowdsourcing analysts and medical experts) liked our cur-
rent color schemes, these might be cumbersome for some
users. We used mainly two color encoding schemes to depict
different annotation types and event types. Additionally, each
clustered event class was depicted as another color scheme. A
color scheme for the clustered event class can be simplified
(the same color for all classes) when the Class View andMatrix
View are hidden,which are not ourmain views.An alternative
coloring scheme for the clustered event class is deploying a
semantic color scheme based on the correlation between event
classes and the sensitivity of annotations (e.g., a class with pos-
itive correlation: blue, a class with negative correlation: red).
Instead of using colors for depicting the size of target objects,
we can change only the lightness of a color to reduce the num-
ber of colors remembered by users.

9 CONCLUSION AND FUTURE WORK

We presented CMed, a novel visual analytics system for
the interactive exploration of medical data annotations. We
defined design requirements based on previous crowdsourc-
ing studies. Our designed framework provides various
insights into crowdsourced clinical data, which cannot be
provided by other tools. Our case studies demonstrate the
usefulness and effectiveness of our framework. Thus, CMed
can help crowdsourcing application analysts/developers to
design better crowdsourcing studies.

In the future, we plan to use our framework for other
crowdsourcing biomedical applications such as virtual pan-
creatography and microscopy imaging. In the current sys-
tem, we only deal with logged events related to a video
player and drawing a bounding box in an annotation tool.
However, there can be different types of events such as
scrolling up/down and browser focus changes [5], depend-
ing on the annotation tools. We will incorporate these
events into our framework to see the effects of these events.
Lastly, in our study, the event patterns we defined had no
effect on a worker’s performance. However, there may be a
correlation between an event pattern(s) including some
other events such as switching tabs and a worker’s perfor-
mance. We will deploy an interactive learning to detect
such behaviors.
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