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Abstract—We introduce NeuroConstruct, a novel end-to-end application for the segmentation, registration, and visualization of brain

volumes imaged using wide-fieldmicroscopy. NeuroConstruct offers a Segmentation Toolbox with various annotation helper functions that

aid experts to effectively and precisely annotatemicrometer resolution neurites. It also offers an automatic neurites segmentation using

convolutional neuronal networks (CNN) trained by the Toolbox annotations and somas segmentation using thresholding. To visualize

neurites in a given volume, NeuroConstruct offers a hybrid rendering by combining iso-surface rendering of high-confidence classified

neurites, along with real-time rendering of raw volume using a 2D transfer function for voxel classification score versus voxel intensity value.

For a complete reconstruction of the 3Dneurites, we introduce aRegistration Toolbox that provides automatic coarse-to-fine alignment of

serially sectioned samples. The quantitative and qualitative analysis show that NeuroConstruct outperforms the state-of-the-art in all design

aspects. NeuroConstruct was developed as a collaboration between computer scientists and neuroscientists, with an application to the

study of cholinergic neurons, which are severely affected in Alzheimer’s disease.

Index Terms—Wide-field microscopy, neuron morphology, segmentation, registration, hybrid volume rendering, CNN
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1 INTRODUCTION

ADVANCES in optical microscopy (OM) have driven the
field of neuroanatomy and the acquisition of high-reso-

lution 3D images of the brain across multiple spatial scales.
Using new techniques and tools for reconstruction, visuali-
zation, and analysis of these 3D images, neuroscientists can
now study in detail the structural and functional connectiv-
ity underlying the brain. This technology is widely used to
diagnose diseases caused by neuron degeneration, such as
cholinergic neurons in Alzheimer’s disease [1].

There are various techniques for imaging brain sections,
such as electron (EM), confocal, two-photon, and light
wide-field microscopy (WFM). Amongst neuroscientists,
WFM is preferred for experimental studies due to its large
field-of-view and fast image acquisition. Imaging a 40� slice
of a sample using confocal microscopy would take 15 hours,
but only 1.5 hours on WFM. Moreover, WFM automatically
moves the sample stage, resulting in sequential image
acquisition without manually readjusting the sample orien-
tation for every field-of-view. These advantages come with

a trade-off. Due to its optics, images acquired using WFM
suffer from a degraded contrast between foreground and
background, low signal-to-noise ratio (SNR), and poor axial
resolution (Fig. 1). The microscope limited chamber size
and the adverse affect of increased light scattering in thicker
samples compel neuroscientists to physically slice thin sec-
tions of specimens. Consequently, a brain study is con-
strained to analyzing individual sections of a specimen.

To study and diagnose brain diseases, neuroscientists
explore the structure and function of the nervous system. In
brain studies using WFM images, due to its optics and lim-
ited chamber size, neuroscientists face three challenges:

� Segmentation of neuronal structures: The primary infor-
mation neuroscientists expect from WFM brain vol-
umes are neuronal structures. The inherent WFM
limitations, such as out-of-focus blurring and the
absence of distinctive set of intensity values differen-
tiating foreground (neurons) from background (blur-
ring artifacts and brain tissue), leads to failure of
current neuron tracing methods.

� Registration of neuronal structures: Following the seg-
mentation, the reconstruction of the entire brain
specimen as a full volume enables a complete under-
standing of neuron morphologies. However, regis-
tration of brain sections is complicated, as the
physical slicing results in non-rigid deformations on
captured images.

� Visualization of neuronal structures: The WFM limita-
tions make visualization parameters adjustment
complex and time-consuming, and directly applying
rendering techniques do not yield effective results.

� Parmida Ghahremani, Saeed Boorboor, Pooya Mirhosseini, Chetan Gudisa-
gar, and Arie E. Kaufman are with the Department of Computer Science,
Stony Brook University, Stony Brook, NY 11794-2424 USA.
E-mail: {pghahremani, sboorboor, semirhossein, fchetan, ari}@cs.stonybrook.edu.

� Mala Ananth, David Talmage, and Lorna W. Role are with the National
Institutes of Health, Bethesda, MD 20892 USA.
E-mail: {mala.ananth, david.talmage, lorna.role}@nih.gov.

Manuscript received 5 Jan. 2021; revised 10 Aug. 2021; accepted 19 Aug. 2021.
Date of publication 3 Sept. 2021; date of current version 27 Oct. 2022.
(Corresponding author: Parmida Ghahremani.)
Recommended for acceptance by C. Wang.
Digital Object Identifier no. 10.1109/TVCG.2021.3109460

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 12, DECEMBER 2022 4951

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on December 15,2023 at 06:29:51 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6935-817X
https://orcid.org/0000-0002-6935-817X
https://orcid.org/0000-0002-6935-817X
https://orcid.org/0000-0002-6935-817X
https://orcid.org/0000-0002-6935-817X
https://orcid.org/0000-0001-6644-5983
https://orcid.org/0000-0001-6644-5983
https://orcid.org/0000-0001-6644-5983
https://orcid.org/0000-0001-6644-5983
https://orcid.org/0000-0001-6644-5983
https://orcid.org/0000-0003-4627-3007
https://orcid.org/0000-0003-4627-3007
https://orcid.org/0000-0003-4627-3007
https://orcid.org/0000-0003-4627-3007
https://orcid.org/0000-0003-4627-3007
https://orcid.org/0000-0002-0796-6196
https://orcid.org/0000-0002-0796-6196
https://orcid.org/0000-0002-0796-6196
https://orcid.org/0000-0002-0796-6196
https://orcid.org/0000-0002-0796-6196
mailto:pghahremani@cs.stonybrook.edu
mailto:sboorboor@cs.stonybrook.edu
mailto:semirhossein@cs.stonybrook.edu
mailto:fchetan@cs.stonybrook.edu
mailto:ari@cs.stonybrook.edu
mailto:mala.ananth@nih.gov
mailto:david.talmage@nih.gov
mailto:lorna.role@nih.gov


Moreover, segmentation and tracing techniques are
limited to classifying features captured within the
designed algorithm or trained model. Thus, a com-
plimentary approach is required.

The primary goal of NeuroConstruct is reconstruction of
neuronal structures inWFMwhole brain specimens that ena-
bles the exploration of the nervous system. To achieve this
goal, we address all challenges and present NeuroConstruct,
a novel end-to-end application to reconstruct neuronal struc-
tures by performing tasks of segmenting, registering, and
visualizing neuronal structures in brain volumes.

To overcome the segmentation and visualization prob-
lem, NeuroConstruct offers a novel Segmentation Toolbox.
It provides simultaneous 2D cross-sectional views and 3D
volume rendering of image stacks along with real-time
user-drawn annotations. It also provides novel annotation
functions to help experts annotate neurons in 3D brain
images efficiently. We further implemented automatic neu-
ron segmentation using a nested CNN that hires skip path-
ways for connecting the encoder and decoder to compute
feature maps and segment neurites using the extracted
maps combined with image processing techniques. CNNs
have achieved breakthrough performance in various seg-
mentation tasks. Their primary issue is requiring a vast
amount of labeled data for training. Due to the high density
of neurons in brain images, their manual annotation in 3D
image stacks requires tremendous time and effort. We intro-
duce a workflow to speed up ground-truth generation.

The robustness of deep-learning models dramatically
depends on the accuracy and availability of sufficient train-
ing data. Biologist’s workflow is subjected to experimental
variations, and their data has immense biological variabil-
ity. Thus, the infeasibility of capturing sufficient training
data covering all neuronal variations can result in the model
failing to segment a neurite for which it was not trained.
Therefore, we devise a hybrid approach to visualize the
extracted neurites along with possible unsegmented neu-
rites. Specifically, our model generates a per-voxel confi-
dence score of the classification as a neurite. In our hybrid
visualization, we first render the iso-surface of high-confi-
dence neurites using a user-adjusted confidence threshold,

calling it the structural representation mode. Next, we intro-
duce a 2D transfer function (TF) of voxel confidence versus
raw data voxel intensity, calling it the fusion mode. By inter-
actively manipulating the TF, experts visualize possible
neurites in the raw volume below the confidence threshold.

To overcome the registration challenge, NeuroConstruct
provides a Registration Toolbox for coarse-to-fine registra-
tion of depth-adjacent brain sections along with visualiza-
tion of brain sections to be registered and the aligned
sections. Using the brain overall structural anatomy, it first
estimates a global rigid-body transformation that coarsely
registers adjacent sections. Then, we introduce a novel
method that maximizes sparsely labeled neurites morpho-
logical continuity in a user-selected region-of-interest (ROI).
We estimate the trajectories of severed neurites at interfaces
between slices, using an ellipsoid as the approximate loca-
tion where these neurites continue in the adjacent section.

The contributions (to the best of our knowledge) of this
paper are as follows:

� First end-to-end application for reconstructing and
visualizing neurites in densely-structured WFM
images.

� Novel 3D Segmentation Toolbox for streamlining
segmentation of neurites with features including
brushing, erasing, optical flow, snap, gamma correc-
tion, skeletonizing.

� Novel CNN model for segmenting the neurites in
low-resolution densely structured WFM images.

� Novel algorithm for registering depth-adjacent brain
sections using a coarse-to-fine sequential process.

� First hybrid visualization technique that combines
segmentation results with the raw input volume.

2 RELATED WORK AND BACKGROUND

2.1 Biological Background

The human brain has 80–100 billion neurons, and the nervous
system groups neurons into different neurite morphology.
Studies have shown that in mice brain, an axonal arbor of a
single cholinergic neuron, including its terminal branches, is
as long as 30 cm [3]. Given the extensive branching of cholin-
ergic projections, conventional specimen preparation and
imaging techniques make it difficult to analyze their full
expanse and intricate features. Beyond the genetic labeling
novelty, a 3D reconstruction of the circuity is required for
understanding the cholinergic connectome.

2.2 Segmentation

Based on the motivation behind the scientific investigation,
visualizing neuronal structures is more significant than ren-
dering voxel intensity values of raw volumes. Our previous
work [2] presents a preprocessing method for meaningful
rendering of neurons. However, a more robust solution
(e.g., neuron segmentation) is required for extracting neu-
rites for visualization and registration purposes.

Neuron segmentation is a challenging task in neurobiol-
ogy, due to the low quality of images and high complexity of
neuron morphology. To tackle this challenge, a number of
manual or semi-automatic segmentation tools have been
developed, such asNeurolucida [4], V3D [5],ManSegTool [6],

Fig. 1. WFM images are volumes obtained by focusing at different
depths of thinly sliced specimen [2]. (a) Volume rendering of unpro-
cessed WFM brain image. (b) Top-left: 2D cross-sectional view of the
volume in x-y plane. Top-right: 2D cross-section in y-z plane at the verti-
cal dashed line. Bottom: 2D cross-section in x-z plane at the horizontal
dashed line. The cross-sections show how out-of-focus light occludes
low-intensity features, making it difficult to analyze 3D structures.
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SIGEN [7]. These tools rely on tedious manual operations,
making the segmentation of complex neurites in large vol-
umes nearly impossible.

Since neurons have a branching tree structure, many
methods have been hired for tracing dendritic branches and
axonal trees, such as optimal seed-points pathfinding [8],
[9], [10], model fitting [11], [12], fast marching [13], [14], and
distance-tree hierarchical pruning [15]. Most of these meth-
ods require an ideal manually- or automatically-generated
set of seeds. Manual marker placement is tedious, while
automatic seed generation is greatly affected by image low
quality, noisy patterns, and broken structures.

Recently, a few learning models have been developed to
automatically trace neurons in OM images. Chen et al. [16]
trained a self-learning method using user-provided neuron
reconstructions. Li et al. [17] hired 3D CNNs for segmenting
neurites, which suffer from relatively long computation.
Zhou et al. [18] developed an open-source toolbox, Deep-
Neuron, with a 2D CNN followed by 3D mapping. Many of
these methods have shown to perform well in segmenting a
single neuron on high-resolution images. However, they
cannot faithfully reconstruct complex neuron morphology
in images with medium to low quality.

There is also a vast amount of research on segmenting
neuronal membranes in EM images. Deep learning models
have shown an outstanding performance in automatic neu-
rites segmentation [19], [20], [21]. However, due to the lim-
ited availability of ground-truth data, they suffer from over-
and under-segmentation. Haehn et al. [22] developed desk-
top applications for proofreading the automatic algorithm
segmentations. Unfortunately, these methods are unappli-
cable to WFM images due to the differences in neuron
visual representation, details level, and images quality.

2.3 Registration and Alignment

Volume reconstruction for OM images of brain specimens
utilizes intensity- or feature-based methods. Intensity-based
approaches select a pair of representative images from adja-
cent sub-volumes and compute a correlation measure to
estimate their relative spatial registration [23], [24], [25].
These methods do not enhance registration accuracy at a
finer morphological scale. Also, imaging artifacts, uneven
contrast, and large datasets are potential bottlenecks for
these methods. Feature-based methods use specific struc-
tures knowledge, which needs preprocessing for producing
geometrical features as registration landmarks. Landmarks
registration methods [26], [27] are fast and scale up easily
with higher-order transformation models. Tsai et al. [28]
presented microscopy slices montage synthesis by utilizing
generic alignment cues from multiple fluorescence channels
without landmarks segmentation. Yigitsoy and Navab [29]
proposed tensor voting based structure propagation for
multi-modal medical images mosaicing.

Lee and Bajcsy [30] registered and reconstructed depth
adjacent sub-volumes acquired by a confocal microscope by
connecting the 3D trajectories of salient cylindrical structures
at the sub-volume boundaries. This method is ineffective on
sparsely labeled samples due to the lack of continuous struc-
tures to be segmented for the proposed trajectory fusion.
Dercksen et al. [31] proposed the alignment of filamentous
structures by tracing the filaments and matching the traced

endpoints to find an optimal transform. NeuronSticher [32]
aligns neurite tips at stack boundaries using triangulation.
However, these tips are identified from neuron-tracing
reconstructions, relying on tip selection.

2.4 Visualization

Recently introduced tools for the reconstruction, visualiza-
tion, and analysis of complex neural connection maps enable
neuroscientists to gain insights into the underlying brain
morphology and function. We refer the reader to a survey
[33] of techniques for macro-, meso-, andmicro-scale connec-
tivity visualization for connectomics. Volume rendering has
been developed for 3D reconstruction and visualization of
brain microscopy images. Mosaliganti et al. [34] developed
axial artifacts correction and 3D reconstruction of cellular
structures fromOM images. Nakao et al. [35] discussed inter-
active visualization and proposed a TF design for two-pho-
ton microscopy volumes based on feature spaces. Wan et al.
[36] described an interactive rendering tool for confocal
microscopy data, combining the rendering of multi-channel
volume and polygonmesh data.

Beyer et al. [37] presented ConnectomeExplorer for inter-
active 3D visualization and query-guided visual analysis of
large volumetric EM datasets. Hadwiger et al. [38] designed
scalable multi-resolution virtual memory architecture for
visualizing petascale volumes imaged as a continuous
stream of high-resolution EM images. Haehn et al. [39] devel-
oped a scalable platform for visualizing registration parame-
ters and steps for fine-tuning the alignment computation,
visualizing segmentation of 2D nano-scale images with over-
layed layers, and interactive visualization for proofreading
EM images. Neuroglancer [40] is a WebGL-based visualiza-
tion framework for volumetric EM data. These methods are
designed specifically for confocal, two-photon, or EM data.
When applied to WFM, they do not yield qualitatively accu-
rate neuron projections. Our previous work [2] discussed the
challenges related to WFM volume visualization and intro-
duced aworkflow for its meaningful rendering.

3 NEUROCONSTRUCT OVERVIEW

NeuroConstruct is an end-to-end application for neuron
reconstruction and visualization for WFM images. It con-
sists of four main components: Segmentation of neuronal
structures, proofreading reconstructed structures, registra-
tion of brain sections, and visualization of the reconstructed
neurons and raw data using hybrid volume rendering. We
present a fast and efficient ground-truth data generation
pipeline. NeuroConstruct provides an interactive Segmen-
tation Toolbox for automatically segmenting neurons and
proofreading the segmentations. It also renders the recon-
structed volume by combining the segmentation results
with the raw input volume. NeuroConstruct also presents a
Registration Toolbox for automatic coarse-to-fine registra-
tion of depth-adjacent 3D brain sections.

NeuroConstruct enables neuroscientists to study brain
sections of interest thoroughly. After the whole brain section
is acquired, the user can follow a 4-step pipeline (Fig. 2): (1)
automatically andmanually coarse-aligningwhole brain sec-
tions using the Registration Toolbox, (2) automatically and
manually fine-aligning an ROI from the coarse-aligned
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stacks using the Registration Toolbox, (3) visualizing the 3D
and 2D views of the fine-aligned stacks using the Segmenta-
tion Toolbox (4) automatically and manually segmenting the
neuronal structures using the provided functions in the Seg-
mentation Toolbox. These result in a complete and precise
reconstruction and visualization of neuronal data.

Users can also choose to use each component, including
coarse-alignment, and fine-alignment in the Registration
Toolbox, and visualization, segmentation, andmanual anno-
tation in the Segmentation Toolbox independently without
the need to go through the whole pipeline. The components
individual usability helps experts to perform the desired
analysis, including visualization, segmentation, and registra-
tion on any WFM of interest independently or go through
certain steps in the pipeline in the desiredmanner.

Both segmentation and registration can be done on the
whole brain sections. However, because of the high density
of neurons and the large size of the brain sections, it takes a
tremendous amount of time to segment the neurons in a
brain section, and neuroscientists might not infer useful
information by analyzing a large segmented brain section.

4 DATA PREPARATION

4.1 Biological Prep

To train and test our application, we used two types of sam-
ples generated by our neuroscientists (Institutional Animal
Care and Use Committee approval# 1618). For segmentation
components, we used densely labeled samples obtained
from a transgenic mouse line where a fusion protein of tau
and a green fluorescent protein was under the control of the
ChAT promotor (ChAT-tauGFP mouse). This allowed for
labeling all cholinergic fibers and cell bodies throughout all
the slices within the sample. For registration components,
we used sparsely labeled samples obtained from a knock-in
mouse where cre-recombinase expressed exclusively in cho-
linergic neurons (ChAT-IRES-Cre mice). Mice were transcar-
dially perfusedwith 4% PFA, and brain tissue was harvested
and sucrose equilibrated for cryosectioning. Samples were

serially sectioned at 20mm thickness and serially imaged on
a WFM scanner (Olympus VS-120). Imaging was conducted
with a 40� objective with z-step of 1mm. WFM images are
volumes obtained by focusing at different depths of a thinly
sliced specimen, which means that each section is an image
stack of 2D slices.

4.2 Ground Truth Generation

To generate ground-truth of reconstructed neurites in 3D
WFM images, we annotated neurites in several brain section
regions using automatic segmentation and manual refine-
ment. Due to a large number of neurites in brain samples,
generating a ground-truth dataset is nearly impossible. To
solve this, we have developed a novel approach for efficient
neuron segmentation in image stacks. We used a small set
of 2D strips to train a 2D CNNmodel for generating prelim-
inary neurite segmentations to be proofread using the Seg-
mentation Toolbox. This technique speeds up the ground-
truth generation process significantly. Our data generation
pipeline consists of 3 main steps:

Step 1 (2D-Strip Annotation). In WFM images, neurites in
x-y plane have a tree-shaped structure. In y-z/x-z planes,
neurites are bright blobs with light projections going out-
wards (Fig. 1). Due to neuron high density and image low
SNR, distinguishing the weak neurons from the background
in x-y plane is hard and neuron annotation in this plane is
time-consuming. Therefore, we used x-z and y-z views for
neuron annotation. Two neuroscientists spent about 40
hours each to annotate one hundred of 2D strips of y-z/x-z
planes with approximately 30 neurons in each strip result-
ing in a set of 3000 individual neuron representations.

Step 2 (Preliminary Segmentation). We used the annotated
strips to train a U-Net [41] based network consisting of con-
tracting and extracting paths. The contraction path consists
of five downsampling components with two 3�3 convolu-
tions, each followed by a parameter rectified linear unit
(PReLU) and a 2�2 max pooling with stride 2. We used
dropout layers with a rate of 0.5 after the last two compo-
nents to reduce overfitting. The expansive path consists of
feature map upsampling followed by a 2�2 convolution,
merged with the correspondingly cropped feature map
from the contracting path, and two 3�3 convolutions, each
followed by a PReLU. Last, a pixel-wise softmax applied on
the resultant image followed by a Poisson loss function to
classify pixels into neurite or background.

Each 2D strip size is 25�512, which is the number of adja-
cent stacks in z-direction (depth) by volume width or
length. We train the network with input images (512�512)
tiled with side by side strips with spacing. It makes the seg-
mentation process approximately 15 times faster than feed-
ing the network, a single strip per image. Our dataset with
3000 neuron representations introduces to the network a
large variety of shape, size, and intensity of neurons. To
infuse more spatial neuronal information, we augmented
the strips by applying flip and zoom transformations. We
trained our network with 300 images, each containing 15
individual augmented 25�512 strips. Under-segmentation
is a major concern, which is the artifact of lack of neurons
projection traveling in z-direction in x-z and y-z planes.

Step 3 (Refinement).We generated a 3D neuronal segmenta-
tion dataset using the trained model in Step 2 and proofread

Fig. 2. Overview of the application. After acquiring a whole-brain section,
experts can use NeuroConstruct to perform a thorough analysis of the
neuronal structures. They can follow the pipeline shown in the figure. In
the registration toolbox, given depth-adjacent whole brain sections, Neu-
roConstruct automatically coarse-aligns the sections. Then, users have
to select an ROI to start the fine-alignment process. NeuroConstruct pro-
vides features for manual refinement of coarse and fine registration and
allows users to save the coarse-aligned brain sections and finely regis-
tered region for further analysis. Next, users can load the registered ROI
in the segmentation toolbox to visualize and segment the neuronal struc-
tures manually and automatically using the manual annotation features
and automatic segmentation methods.
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the segmented results to create an accurate ground-truth set
using the Segmentation Toolbox (explained in Sec. 6).

5 SEGMENTATION

The neuron segmentation process consists of two steps: Neu-
rite segmentation and soma segmentation. We segment neu-
rites using our designed model. For segmenting somas, we
use a thresholding technique combined with the segmented
neurites as a guide. This section describes the neuron seg-
mentation process, including the dataset and the proposed
model, and soma segmentation technique.

5.1 Data

We created a ground-truth dataset of WFM image stacks for
training and testing purposes.We cropped six regions of size
25�512�512 randomly from the brain medial septum region
with the size of 25�48000�33000 and annotated using the
pipeline explained in Sec. 4.2, to be used as ground-truth.
This dataset covers many variations in neuron morphology
due to the large size of the cropped regions and the high den-
sity of neurons. The segmentation model was trained, tested,
and validated on 3, 2, and 1 image stacks, respectively. We
also conducted a qualitative analysis to evaluate the accuracy
of reconstructed neurites, performed by domain experts.
Using our trained model, we segmented neurons for eight
image stacks (never before seen by the model) with sizes
varying between 25�512�512 and 21�1024�1024 randomly
cropped from the medial septum and cortical sections of five
different brains.

5.2 Proposed Network for Neurite Segmentation

We propose a nested encoder-decoder network with re-
designed skip pathways for connecting the encoder and
decoder sub-networks (similar to U-Net++ [42]) for a pre-
cise semantic segmentation, and stacking U-structure (simi-
lar to U2-Net [43]) for salient object detection. Fig. 3 shows
an overview of the network architecture. Our network is a
two-level nested U-structure consisting of 21 stages. Each
stage is configured with a ReSidual U-block (RSU) intro-
duced by [43]. In our network, the feature maps follow a

path through a dense stage block to fuse the output from
the previous stage layer of the same dense block with the
corresponding up-sampled output of the lower dense block.
The re-designed skip pathways enable more similar seman-
tic level feature maps between the encoder and decoder,
making the optimization problem easier, and the use of
RSU blocks enables a more efficient extraction and aggrega-
tion of intra-stage multi-scale contextual features.

Architecture of the Network. Our network consists of 21
stages. Each stage is formed from an RSU block with a spe-
cific height. We represent each stage as RSUi;j

L , where i is
the index of the down-sampling layer along the encoder of
the big U-structure, j is the index of the up-sampling layer
along the decoder of the big U-structure, and L is the num-
ber of encoder layers in the U-Net-like structure of the RSU
block, except in the stage with L ¼ 2. Since the resolution of
feature maps in the last encoding stage is relatively low, fur-
ther down-sampling results in the loss of useful informa-
tion. Therefore, in the last encoder stage (L ¼ 2), we only
use dilated convolutions, having the same resolution as its
input feature maps. As shown in Fig. 3, our network con-
sists of a sub-network of encoder stages which is the back-
bone of the network, a sub-network of decoder stages, skip
pathways, and a saliency map fusion module. The fusion
module is responsible for generating the probability map.
The network generates five side output saliency probability

maps S5
side, S

4
side, S

3
side, S

2
side, S

1
side from stages RSU5;0

2 , RSU4;1
3 ,

RSU3;2
4 , RSU2;3

5 , RSU1;4
6 by a 3�3 convolution layer, up-sam-

pling layer and a sigmoid function, and five top output
saliency probability maps S1

top, S2
top, S3

top, S4
top, S5

top from

stages RSU0;1
7 , RSU0;2

7 , RSU0;3
7 , RSU0;4

7 , RSU0;5
7 by a 1�1 con-

volution layer and a sigmoid function. Then, the final
saliency map Sfuse is generated by concatenating all side
and top output saliency maps, followed by a 1�1 convolu-
tion layer and sigmoid function.

RSU Block. Each block consists of 3 main components: (1)
Input convolution layer, transforming the input feature map
x to an intermediate map FðxÞ for local feature extraction. (2)
U-Net based encoder-decoder structure with input of the
intermediate feature map FðxÞ that extracts the multi-scale
contextual information UðFðxÞÞ, where U represents the

Fig. 3. Architecture of the 3D CNN segmentation model. It consists of contracting and expansion paths. The network input is a batch of grayscale
images and its output is a probability map of the same size. Each output pixel represents the probability of the input pixel being part of a neurite.
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U-Net-like structure. The structure with larger height results
in richer local and global features. (3) Residual connection fus-
ing the output from the local features FðxÞ and multi-scale
features UðFðxÞÞ using the formula: FðxÞ + UðFðxÞÞ. RSU
blocks enables capturing of the fine details that might be lost
by direct up-samplingwith large scales.

We define RSU blocks as GL ¼ RSU-LðCin;M; CoutÞ,
where Cin; Cout;M are respectively the sizes of input chan-
nel, output channel, and RSU internal layers channel. L is
the number of layers in the encoder of the RSU block,
except for L ¼ 2. As mentioned earlier, due to the low res-
olution of feature maps in the last encoding stage, we use
dilated convolutions instead of down-sampling. So, in this
stage, the defined L do not denote the number of layers in
the encoding stage. We formulate the skip pathways as
follows:

RSUi;j
L ¼ GLðRSUi�1;j

Lþ1 Þ j ¼ 0;

GLð½½RSUi;m
L �j�1

m¼0;UPðRSUiþ1;j�1
L�1 Þ�Þ j > 0;

(

(1)

where function UPð:Þ denotes an up-sampling layer, and ½ �
denotes the concatenation layer. Stages at level j ¼ 0 receive
one input from the previous layer. Stages at level j > 0
receive jþ 1 inputs, where j input(s) are the output(s) of the
previous j stage(s) in the same pathway and the last input is
the up-sampled output from the lower pathway.

Training. The training regiment is as follows:

� Input Data. We trained the network with 512�512
images. To addmore variation in neuronmorphology,
we applied elastic deformations (e.g., random rotation
and scaling), resulting in 540 images of size 512�512.

To generate a universal model for segmenting neu-
ron morphology that encompasses images captured
from different sections of the brain using any imaging
techniques, we adjust the pixel intensities through
Eq. 2:

Adjustedk ¼
Ik �minIk

maxIk �minIk

� �g

(2)

where k is the image index in the image stack, Ik is
the intensity array of the kth image in the stack,
minIk and maxIk are respectively the minimum and
maximum intensities in the corresponding image,
and g is the intensity adjustment parameter. Using
Eq. 2, we map the intensity range to [0, 1], leading to
a universal WFMmodel.

� Parameters. We trained the network using Adam
optimizer with a batch size of 4 for 2D training for
100 epochs. The initial learning rate was set to 0.001.
We define the loss function as:

L ¼
XN
i¼1

wn
top‘

n
top þ wn

side‘
n
side þ wfuse‘fuse (3)

where N ¼ 5, ‘nside and ‘ntop denote the loss of the side
output saliency map Sn

side and the top output saliency
map Sn

top, w
n
side and wn

top denote their weights, and ‘fuse
is the final fusion output saliency map Sfuse with its
corresponding weight wfuse. We use binary cross-

entropy loss to calculate loss of each output (‘),
defined as:

‘ ¼ �
XM
i¼0

yilogðy0iÞ þ ð1� yiÞlogð1� y0iÞ (4)

where M is the number of samples, yi is the label for
i, and y0i is the predicted label for sample i. It takes
186 min. to train the network with defined parame-
ters using the training set of 540 images with a size
of 512�512.

� Output Data. The model generates images of the
same size as the input (512�512). Each output pixel
represents the probability of the input pixel being
part of a neurite, showing the network confidential-
ity in classifying the pixel as foreground (with close
to zero for background pixels). Weak neurites have
lower probability than strong ones. This probability
map enables experts to study neuron morphology in
detail, as they can study weak and strong neurites in
one whole structure or independently.

5.3 Soma Detection

Soma is the spherical neuron part containing the nucleus.
Fig. 4a shows the neuron structure. As shown in Fig. 4b,
soma has higher contrast than neurites. This feature allows
us to segment somas using thresholding techniques without
the need to create a ground-truth dataset, training networks,
and spending time and resources. Using this feature, we
extract the somas from the image stacks by thresholding the
voxel intensities using multi-level otsu’s method [44]. We
consider two threshold levels (t1, t2) to classify the image
into three classes; the background voxels are in the range 0
to t1 � 1, the neurite voxels most probably are in the range
t1 to t2 � 1, and the soma voxel (which are the brightest vox-
els) are in the range t2 to 256. Some strong neurites might
have high contrast similar to somas resulting in misannota-
tion. We use the generated segmentation mask by the model
consisting of dendrites and axons to remove the segmented
neurites that are mistakenly segmented as somas.

6 SEGMENTATION TOOLBOX

NeuroConstruct provides a Segmentation Toolbox for seg-
menting and visualizing neurons in small crops of WFM
image stacks, as our neuroscientists required a toolbox that
visualizes neurons in fine detail with the highest possible
resolution enabling them to study complex brain morphol-
ogy. As shown in Fig. 5 and the accompanying video, the
Toolbox offers three options and various features for efficient
and accurate neurite segmentation: (1) annotating neurites

Fig. 4. (a) Neuron structure. (b) Region cropped from the brain medial
septum. A soma is a bright green blob.
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from scratch, (2) loading an annotation file and refining the
annotations, (3) selecting NeuroConstruct Segmentation
method and proofreading the results.

6.1 Visualization of Image Stacks

The Toolbox provides four simultaneous views of the image
stacks to assist neuroscientists in effectively and confidently
mark neurites in the raw WFM volume: The first three are
2D cross-sectional views in the x-y, x-z, and y-z planes. The
fourth view is rendering of the 3D volume and iso-surface
of annotated neurites. These four views provide a compre-
hensive exploration of the image stacks and no limitation in
visualizing and annotating any structure.

6.2 Annotation Features

The user can annotate the neurites and somas with two dif-
ferent colors, red and black. When the user draws over any
2D cross-sectional slice, all views are updated simulta-
neously to follow the user’s drawing. The Toolbox allows
the user to zoom in and out in all views. The user can spec-
ify an ROI to focus on. In the 2D views, the Toolbox bounds
the selected ROI with a blue rectangle, and in the 3D view,
it only renders the specified ROI. If a user prefers to manu-
ally annotate an image stack from scratch or manually refine
an automatically segmented stack, the Toolbox offers novel
features to ease the manual annotation process. We describe
below some of these functions:

Optical Flow. This feature helps the user to annotate neu-
rites more efficiently. As shown in Fig. 1, a neurite in x-z
and y-z planes is a circular bright region. When the user
clicks on a neurite, the Toolbox finds the smallest 2D region

surrounding the selected neurite and applies the Pyramidal
Lucas-Kanade optical flow algorithm [45]. Then, it finds the
most similar regions (based on pixels intensities) to the cor-
responding neurite in the following image slices. Roberts
et al. [46] hired a similar approach for estimating optimal
volumetric pathway through the image stack connecting
the computed 2D segmentations using dense optical flow.
Their approach requires 2D segmentation on the first and
last image slices to compute the minimum distance from
pixels in these slices, while we compute the neuron path
using the user-specified segmentation on the first slice and
find the most similar regions in the following slices.

Snap. A neurite might be visible in several image slices
with different levels of contrast and brightness. However, a
pixel is considered a neurite if it is unblurry and has higher
contrast than pixels in adjacent slices. In some cases, due to
the low contrast between neurites and the background and
image blurriness, it is challenging to select the correct slices
containing the neurite. The Toolbox helps the user to find
those slices. The user specifies the ROI containing the corre-
sponding neurite in x-y plane and clicks on the neurite in
one of the slices. The Toolbox searches for the sharpest point
with the highest contrast in the specified slices and selects
the 2D region with the highest intensity in a virtual cylinder
perpendicular to the view plane from the corresponding
point with a brush size diameter.

3D Skeleton. The Toolbox employs user’s annotation to
generate a 3D skeleton (cf. [47]). The algorithm defines an
octree over the annotations and examines 3�3�3 neighbor-
hood of voxels. It iteratively proceeds until only strips of
voxels are left. This method outperformed various methods
we tested for 3D skeleton generation, as they failed to create
the skeleton of weak neurons with thin regions.

Gamma Correction. The user can change the contrast of 2D
views using the corresponding slider. It transforms linear
color mapping to a non-linear space and adjusts the contrast
using the user-specified gamma values.

TF.The user can change the contrast and color of the ren-
dered volume using a slider. To adjust the rendered volume
contrast, the Toolbox uses the following novel TF:

� g ¼ 0: Defining n bins with equal length for the TF,
where n is the number of bins.

� 0 < g � 1: Breaking the TF into bins with length
defined as ai ¼ 2g�ai�1, where ai is the ith bin, andPn

i¼0 ai ¼ 1.
We empirically found that n ¼ 20works well on our data.

We provided our experts with our TF and gamma correction
methods applied to the same image stacks. After a thorough
comparison between these techniques, they remarked that
our TF outperforms gamma correction in terms of neurite
visual representation in blurry imageswith low contrast.

6.3 Visualization of Automatic Segmentation

The primary information neuroscientists expect to visualize
in brain WFM volumes are neuronal structures – namely,
tubular-shaped neurites and blob-like somas. The inherent
challenges of blurred WFM data and the absence of distinc-
tive set of voxel intensity values that can differentiate fore-
ground (neuronal data) from background (blurring artifacts
and brain tissue) makes the task of adjusting visualization

Fig. 5. Segmentation Toolbox screenshot. The main menu has four
options: File, Analyze, Process, Help. File option provides loading image
stacks and/or annotations, and saving annotations (shown in red). Ana-
lyze option includes the Skeletonize feature. Process options are 2D and
3D segmentation and registration of the image stacks. Help menu has
instructions on Toolbox use. (a) 2D cross-sectional view of the volume in
x-y plane. (b) 2D cross-sectional view in x-z plane. (c) 2D cross-sectional
view of the volume in y-z plane. (d) 3D volume of a WFM image stack.
(e) Area selection frame to specify an ROI to focus on by adjusting corre-
sponding sliders. (f) Brush options frame including size, color, and eraser.
(g) Display options frame containing gamma value selection sliders for
2D and 3D views and annotation display options. (h) Annotation functions
frame, containing the helper functions for neurite annotation, including
snap and optical flow features.
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parameters or directly applying surface rendering techni-
ques to the raw volume tedious and disfavored by neuro-
scientists. Finding optimal visualization parameters for
rendering both high- and low-intensity neurites while sup-
pressing similar intensity-valued blurring artifacts becomes
more complicated in densely populated samples. Thus, we
use the output of our segmentation pipeline as an integral
component for visualizing neurons.

The robustness of deep learning models greatly depends
on the accuracy and availability of sufficient ground-truth
training data. For training, we attempted to accurately anno-
tate neurites of varying intensity, trajectory, morphology,
and biological labeling. However, using real data, there is
large biological diversity and within biologists’ workflow
there are many experimental variations from data prepara-
tion methods to imaging modality input parameters and
conditions. Thus, in a practical scenario, preparing a training
set covering all variations is an ambitious goal to achieve.

In NeuroConstruct, we combine the ability to use visuali-
zation methods to render essential features within a dataset
and the binary mask from our segmentation model as two
complimentary inputs to what we term as, hybrid visualiza-
tion. Using hybrid visualization, users can recover missing
neurites by exploring the correlation between the raw vol-
ume scalar values and the segmentation confidence score
for each voxel, determined by our model, which we repre-
sent as a 2D TF. Given a 3D image stack, NeuroConstruct
first segments each image stack, and then combines them to
create the final 3D segmentation mask corresponding to the
output. The computed segmentation mask is a volume,
where each voxel represents a confidence score between 0
and 1, where 0 is background and 1 represents a neurite
with full confidence. Using this score, we provide two visu-
alization modes, structural and fusion (see Fig. 6 and
Fig. S1, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2021.3109460. in Supplementary Material). The struc-
tural mode renders the segmentation mask as an iso-sur-
face. Using a slider, users interactively choose a minimum
confidence score as the minimum threshold value for recon-
structing an iso-surface using marching cubes.

To visualize possible neurite structures in the raw volume
with scores below the threshold confidence, we offer the
hybrid fusionmode that simultaneously renders iso-surfaces
extracted in the structural mode along with selected voxels
from raw volume, using a 2D TF that represents the raw vol-
ume scalar intensity versus segmentation confidence score.
Users can draw a rectangular region on the 2D TF for direct
volume rendering (DVR) of the selected voxels, as in Fig. 6,
and select points on the 2D TF to render iso-surface of the
selected voxels. By observing domain experts, we deter-
mined to use structural rendering along with DVR with the
2D TF as a default preset, as it is more effective to select an
entire voxel range. One limitation of such a correlation is that
we assume that themodel outputs a level of reasonable confi-
dence for neuron voxels, compared to background and noise
voxels. A future work to overcome this limitation can be
model re-training using a refined set of annotations gener-
ated by this hybrid visualizationmode.

7 REGISTRATION

In an ideal scenario, undisturbed imaging of biological sam-
ples would allow for the best reconstruction of cholinergic
axonal projections. However, current experimental methods
for imaging using a WFM require the physical sectioning of
brain specimens. To this end, NeuroConstruct presents a
coarse-to-fine pipeline for the registration and alignment of
neuronal fibers across the sliced sections.

7.1 Coarse Registration

In neuroscientists’ workflow, physically sectioned brain sli-
ces specimen are placed on a glass-slide at arbitrary posi-
tions and orientations and imaged separately using WFM.
Therefore, an intuitive initial step is to coarsely register the
individual brain section volumes. For coarsely registering
the image stacks, we tried several methods (e.g., intensity-
based [23], [24], [25]) that perform well in registering slices
at a coarse level, but they do not align neurites within slices
at a finer, morphological scale. We also attempted to adapt
the montage/mosaic stitching alignment (primarily used to
align microscopy tiles in x-y direction) [28], [29]. Our
method draws insights from the tensor voting method [29].

We take as input a series of depth-adjacent sections and
use the tissue structure to estimate a global rigid-body
transformation between adjacent sections. The series of 3D
sections have to be transformed into a single reference coor-
dinate system. So, as an initialization step, users need to
specify a reference brain section. Using the referenced sec-
tion, we determine the slice representing the tissue largest
spatial extents and consider that slice image space as the ref-
erence coordinate system for subsequent transformations.

For estimating rigid transformations between sections,
the interfacing z-slices from each depth-adjacent section pair
are used as representatives for the coarse registration. Some
approaches suggest using slices with the highest contrast
within the 3D sections [30], [48], as the end slices usually
have low signal values. However, since NeuroConstruct
registers several sections, we expect changes in the brain
outer boundary across the sequence. Thus, to avoid cascad-
ing errors, we choose interfacing sliceswith the smallest vari-
ation in the outer boundary between adjacent sections.

Fig. 6. Neuronal data hybrid visualization. Top row shows the cortical
region and bottom row shows the medial septum region. Green repre-
sents iso-surface rendering of the automatic segmentation result, and
blue represents direct volume rendering of raw data using 2D TF map-
ping. For both datasets: (a) Structural mode: iso-surface rendering of the
high-confidence voxels. (b)-(c) Hybrid Fusion mode: the iso-surfaces in
(a) combined with direct volume rendering of the raw data using two dif-
ferent ranges selected on the 2D TF mappings shown on the left.
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Finally, a rigid-body transformation is estimated using
Mattes mutual information (MI) [49] with a regular-step
gradient descent optimizer. MI for intensity-based registra-
tion uses joint probability distribution of pixel samples
between images and define a mapping for a set of pixels
based on value similarity by reducing the entropy between
the distributions, signaling the images are likely better
aligned. This method is well-suited for our coarse alignment
as the brain tissue outer-boundary or internal regions vary
in perimeter across the anterior to posterior, and geometry-
based registration will not yield effective results. In apply-
ing MI, we adopted a multi-resolution approach to avoid
reaching a local minimum due to noise and tiling artifacts
in a sparsely labeled sample. We doubled the step size for
each subsequent higher resolution to avoid the optimizer
from focusing on progressively smaller regions.

7.2 Fine Alignment

Following coarse registration, we utilize the coherency
between neurites geometric structures across depth-adja-
cent sections. Our fine alignment method has 3 major
steps: (1) ROI selection, (2) automatic neurite trajectory
propagation, and (3) automatic trajectory alignment. The
main idea is to adopt a feature-based registration to maxi-
mize the neurites morphological continuity in neighboring
brain sections.

ROI Selection. A critical limitation of micrometer resolu-
tion microscopy images of brain samples is its large spatial
extent. For a computationally faster and memory-efficient
implementation of the fine alignment method, we ask the
user to mark an ROI.

Neurite Trajectory Propagation. Common methods for
registering microscopic images introduce fiduciary land-
marks during image acquisition, which are then registered
to reconstruct the complete volume. However, this adds
complexity to neuroscientists’ workflow. In our fine align-
ment approach, we have developed a novel method that
uses linearly extrapolated neurites trajectories to infer
their corresponding continuity, beyond the section slicing
interface. This correspondence between neurites is used to
estimate the necessary transformation parameters that
spatially align depth-adjacent sections. To formally define
our approach:

� Let V1 and V2 be two adjacent sections, where the
z-slices order from V1 to V2 are in anterior to poste-
rior direction.

� LetVpost
1 andVant

2 be the z-slices corresponding to the
posterior sub-section of V1 and the anterior sub-sec-
tion of V2, respectively. In our implementation, the
extracted thickness of Vpost

1 and Vant
2 are set to be

5mm.
� Let Vo be the region defined by Vpost

1 [Vant
2 . This is

essentially the interfacing region V1 and V2.
Broadly, we determine a subset of neurites from V1 and

V2 whose trajectory within the section suggests continuity
beyond the section interface and establish a correspondence
between the candidates with a similar trajectory in the
depth-adjacent sections. Using this information, we solve the
alignment problem in Vo, by maximizing overlaps between
linearly extrapolated trajectories of the neurites. Fig. 7 pro-
vides an illustration of our fine alignment algorithm.

First, for each two serial sections, we locate neurites with
trajectories propagating into the other section and estimate
a propagated trajectory direction. We first use the segmenta-
tion mask volume (see Sec. 5) to find a 3D line segment that
passes through the connected-component voxels of each
extracted propagating neurite from Vpost

1 or Vant
2 . Next,

using the line segments, we determine propagation direc-
tion as a vector vi;j, for each propagating neurite. Since the
goal is to extrapolate the propagating trajectory, we did not
consider the entire neurite in the section (V1 or V2) but
rather limited to the z-thickness defined for Vpost

1 and Vant
2 .

Finally, each neurite trajectory propagation in the over-
lapping 3D space Vo is defined by an ellipsoidal region
around its end-point close to the section interfacing slice,
using the estimated vector vi;j as the major axis (see Fig. 7).
The choice of an ellipsoid to represent the trajectory propa-
gation is to accommodate possible neurite signal-loss and
non-rigid deformation from physically slicing the brain.
Because of hydration and dehydration of sample prepara-
tion, in addition to the uniform brain growing and shrink-
ing, tissue distortion may occur. Therefore, we center the
ellipsoid at the end-point of a propagating neurite to maxi-
mize the search space for estimating a transformation that
aligns depth-adjacent sections. The ellipsoid major axis is
aligned parallel to the estimated trajectory propagation

Fig. 7. Steps of our neurite alignment (fine registration) in two depth-adjacent ROI sections. (a) We determine a subset of neurites whose trajectory
suggests continuity beyond the interface of its section. We then estimate a direction of its propagated trajectory into the depth-adjacent section and
define an ellipsoidal region around its end-point, representing a 3D space of possible continuing locations, shown in the top of (b). Then, we use ICP
on the ellipsoids point cloud representation to estimate a rigid-body transformation, as shown in the bottom of (b). Finally, we present the user with
an interface to verify the results and correct for any misaligned neurites (c).
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vector vi;j, and the other two axes perpendicular to it. In
our implementation, the ellipsoid major axis length is
twice the thickness defined for Vpost

1 and Vant
2 and the other

two axes length equals to the neurite thickness. This length
ensures that the ellipsoid propagates to the depth-adjacent
section.

Trajectory Alignment. After ellipsoid generation, the final
step is to maximize propagating neurites alignment. We
translate this problem into a simpler point-cloud registra-
tion, where each point on the ellipsoid surface represents a
potential location for the continued neurite trajectory. By
discretizing the ellipsoidal regions as 3D point clouds and
estimating a rigid-body transformation using ICP, we apply
the transformation to the entire section and concatenate
with its depth-adjacent section to create an aligned sub-
volume.

Each potential correspondence measure v in the ICP esti-
mation is assigned using gm;n ¼ v1Dm;n þ v2ju1;m � u2;nj,
where m and n are the jth indices of the two sets trajectory
vector, D is the euclidean distance between the two vectors
start points, and v1;2 are weights. vi;j is determined as the
vector projection angle vi;j on the x-y plane (top in Fig. 7b).

To establish a potential one-to-one correspondence
between the trajectories,we apply aweighted bipartitematch-
ing approach using the Hungarian algorithm [50] that mini-
mizes the cost across all of the potential assignments. Using
these, a transformation is measured based on Arun et al.’s
method [26] that maps the propagated trajectories from one
section to the other using p

ðiÞ
fixed ¼ Rp

ðiÞ
moving þ T , where i 2

1; . . . ;N points, p
ðiÞ
fixed is the ith fixed point, p

ðiÞ
moving is the ith

moving point,R is a 3�3 rotationmatrix, andT is a 3�1 trans-
lation vector. In our implementation, we considerV1 to be the
fixed section if its position is anterior to the reference slice
(determined in the coarse registration step, Sec. 7.1) and the
moving section otherwise.

8 REGISTRATION TOOLBOX

NeuroConstruct offers a Registration Toolbox which pro-
vides coarse and fine alignment registration and visualiza-
tion of brain sections. We conducted a study to find the
proper way of visualizing large image stacks with GBs of
data. We provided our neuroscientists with two visualiza-
tion options: (1) visualization of the image stacks maximum
intensity projection (MIP), and (2) visualization of the raw
image stack combined with a slider for moving between the
slices. Our experts preferred MIP visualization as they
could verify the registration result faster and easier.

The Registration Toolbox offers sections coarse align-
ment and user-selected ROI fine alignment and visualizes
the base, moving, and transformed moving image in the
corresponding viewer (see Fig. 8). The user can then manu-
ally refine the registration parameters using the provided
translation and rotation options. Rendering image stack
MIP speeds up the manual alignment process as the trans-
formation is only applied on the MIP images and enables an
interactive user experience. For accelerating the computa-
tion, the final registration parameters are applied on the
whole image stack, in two stages: (1) before starting fine
alignment, and (2) while saving the user-requested regis-
tered images.

9 IMPLEMENTATION

The NeuroConstruct consists of several components, Seg-
mentation and Registration Toolbox, segmentation training
models, coarse and fine alignment registration, and struc-
tural and hybrid visualization modes. The Segmentation
and Registration Toolbox, fine alignment algorithm, and the
structural and hybrid visualization modes were imple-
mented using python, VTK [51] and Qt libraries. The coarse
alignment module was implemented in C++ using ITK [52]
and VTK [51]. The CNN model was implemented using
python and Keras and trained and tested on a desktop with
an NVIDIA Quadro RTX 6000 GPU, which was also used
for all NeuroConstruct implementations.

10 EVALUATIONS AND RESULTS

10.1 NeuroConstruct Evaluation

We were in close contact with our neuroscientists to design
our system, add features and refine functionalities based on
their needs. These domain experts (co-authors) thoroughly
evaluated the system using various scenarios. As the first
use case, they followed the 4-step pipeline, starting by
coarse-aligning, fine-aligning the brain sections through the
Registration Toolbox, visualizing, and automatically and
manually segmenting the neurons through the Segmentation
Toolbox to reconstruct the whole WFM brain sections
acquired from different regions of the brain. In other use
cases, they used each component individually. After a care-
ful review of NeuroConstruct, our neuroscientists found it
“exclusive” and “specialized”. They said “the framework
provides an end-to-end solution for segmentation, registra-
tion, and visualization of serially collected WFM images.
Upon image acquisition, data can be registered using the
Registration Toolbox, and then each individual image can be
segmented for a clean representation of the signal to the
background. At each of these steps, the critical component is
an automated solution that can be entirely modified by user
input. These user-updated segmentations on the registered
volumes essentially enable tracing individual projections
across a volume, facilitating the study of cholinergic neurons

Fig. 8. Screenshot of the Registration Toolbox. (a) Base image viewer.
(b) Moving image viewer. (c) Coarse alignment frame, showing the result.
Users can adjust image contrast using provided sliders and refine the
rotation or translation parameters to reach the desired registration. Using
the provided buttons at the bottom, users can hide/show the base, mov-
ing, and transformed moving image to verify the registration result more
precisely. (d) Fine alignment frame, showing the result on the user-
selected ROI. It provides the same features as the coarse-alignment
frame, includingmanual alignment parameters and display options.
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affected by Alzheimer’s disease.” They also evaluated each
component and features of the toolboxes separately (see
Sec. 10.2 and 10.3).

10.2 Segmentation Toolbox Evaluation

Our neuroscientists used the Segmentation Toolbox to anno-
tate and trace projections within WFM sections. They evalu-
ated the Toolbox, including the hybrid volume rendering
and annotation features, and compared the Toolbox with
available tools. They believe that segmentation and volume
rendering offer incomparable tools for neurite segmentation
and subsequent visualization. Several features are unique to
our Toolbox that our experts have not found in other pro-
grams they have used (e.g., ImageJ [53], FluoRender [36]).

Hybrid Volume Rendering Evaluation. Using the hybrid
volume rendering, users visualize and have ultimate control
over the auto-segmentation result. The Toolbox then pro-
vides a user-friendly interface for identifying signals from
the background and improving the segmentation. Our
experts believe that “both of these features allow users to
visualize a full resolution image, which is critical during
segmentation.” Overall, they found this visualization ideal,
as it overlaid the segmentation on the raw data, allowing
users to adjust and visualize the segmentation based on
what they desire to visualize in the raw. They also remarked
“this allowed for segmenting different neuron types, ini-
tially strongest, and the option to include weaker ones.”

Annotation Features Evaluation. The Toolbox offers an
option to control the contrast of all views. Our experts found
this feature helpful, saying that “the gamma slider allowed us
to incorporate all fibers weak and strong, or just to annotate
and understand morphological or trajectory in the strongest
fibers.” The sliders allow the user to choose an ROI to focus
on and visualize it across X, Y, andZ individually. To improve
upon or erode the annotation, the Toolbox provides a simple,
user-friendly solution, a paintbrush-like feature. Our experts
said “this intuitive tool makes it exceptionally easy for users
to improve the segmentation on their own in fluid strokes, fol-
lowing a projection along its path. The ability to draw, trace,
and erase on a slice by slice and pixel by pixel basis provided
us complete control over how refined or simple we wanted
the annotations to be, and the brush size option allows us to
carefully follow and mimic the projection morphology and
path.” Our experts expressed their interest in snap by saying
that “the toolbox offers a smart-adjustment to the simple
paintbrush concept by updating the view as you draw to the
point where the signal is sharpest for every click. This is espe-
cially helpful as projection paths in real data are hardly ever
straight orwithin the same optical section but instead come in
and out of view,making tracing them challenging!” Using the
updated segmentation, a skeletonized image can be generated
and overlaid onto the 3D rendering for simplified, clean visu-
alization. Our experts remarked that “while the annotation
feature allowed for visualization of neuron morphology, the
skeleton view allowed for a simplified way to visualize neu-
rite trajectory. These two features worked in complement to
enhance 3D visualization.”

10.3 Registration Toolbox Evaluation

Our experts registered and visualized brain sections using
the Registration Toolbox and believe that it provides a

unique solution for serial rendering of WFM images. The
base and moving images are loaded in two separate frames
for initial coarse alignment. Our experts said: “the loaded
images offer a good deal of flexibility and can be loaded as a
maximum intensity projection of a 3D image (image contains
X, Y, and Z information) or a sub-stack of the XYZ image.”
The Toolbox then computes coarse alignment and offers to
move and rotate the image and visualize the base and mov-
ing image individually. Our experts believe that “this allows
users control over the ultimate coarse alignment solution.”
Upon completion of coarse alignment, users can save it and,
ultimately, the new volume (two registered images). This is
in our experts’ interest as it provides an essential intermedi-
ate point at which further registration can be done with the
series next image, or the new volume can be separately
inspected. At this point, images fine alignment can be con-
ducted upon selection of a small relevant ROI. Similar to
coarse alignment, the fine-alignment is visualized within the
Toolbox and can be moved/rotated for ultimate control over
the fine-alignment solution. The final aligned volume (coarse
+ fine) can be saved for further analysis.

Overall, our experts found a few features of this Tool-
box as a unique solution for neuroscientists. “First, the
toolbox completes segmentation of the images as a step
before registration, which provides a complementary set
of information to use in visualization and analysis. Second,
the down-sampling conducted by the toolbox is a tempo-
rary solution for ease of working with large images. Upon
saving, the solutions for both coarse- and fine-alignment
are applied to each Z step within the stack, thereby provid-
ing the end volume with full image resolution. Finally, the
registration toolbox offers a great deal of flexibility to
incorporate the user’s preference into the registration with
the use of arrow toggles to nudge the image as well as tog-
gles to rotate the image. These components of the registra-
tion toolbox make it a powerful tool for registration of
serial WFM images.”

10.4 Segmentation Method Evaluation

Quantitative Analysis. Evaluation Metrics. We evaluated the
trained model using several metrics. We define TP as pixels
correctly segmented as neurite, TN as pixels correctly seg-
mented as background, FP as background pixel segmented as
neurite, and FN as neurite pixels segmented as background.
We then compute precision: TP

TPþFP , recall: TP
TPþFN , f1-score:

2� recall�precision
recallþprecision , accuracy: ðTPþTNÞ

ðTPþTNþFPþFNÞ , IOU: ðTP Þ
ðTPþFPþFNÞ ,

andDice: ð2TPÞ
ð2TPþFPþFNÞ .

Testing Set. Our testing set contains 50 images of size
512�512, cropped from the medial septum, and manually
segmented using the pipeline in Sec. 4. The manual segmen-
tations are binary masks, where 0 represents background
and 1 represents neurite. The network output is a probabil-
ity map within the [0,1] range, where neurite pixels have a
higher probability than background pixels.

Speed. The trained model segments a 512�512 image in
0.28 seconds. Running time scales up linearly by the volume
depth and every 512 increment in width and length, as each
input 3D image stack is broken into 2D image stacks of size
512�512 with step size of 1, 512, and 512 over z-,y-, and
xaxis, respectively.
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Comparison.We applied several automatic neuron tracing
techniques on our testing set, including App2 [15], Smart
Tracing [16], Rivulet [54], TReMAP [55], andNueroGPS-Tree
[10], but they failed at reconstructing neuronal structures in
the absence of a soma in densely-structured low-resolution
images. We compared the performance of our model against
three state-of-the-art models including U2-Net [43], U-Net+
+ [42], U-Net3+ [56], summarized in Table 1. You can find
precision-recall curve for these models in Fig. S2, available
online in Supplementary Material. As seen, our model
achieves the best overall performance in segmenting neu-
rites. As shown in Fig. 9, our model detects strong and weak
neurites and onlymisses extremelyweak ones.

We also evaluated our model against these three models
on various tasks, including nuclei segmentation and liver-
tumor segmentation with larger datasets (consisting of
thousands of images). According to all metrics, our network
had better performance and more robustness on various
segmentation tasks, compared to other networks.

Expert Analysis.Ourmodel reconstructs the complete neu-
ronal structure including weak neurites blended into the
background due to the image low contrast in densely struc-
tured image stacks. Our experts were provided with crops
from different brain regions to evaluate how our segmenta-
tion improved neuron visualization as compared to raw
data. Despite the brain region, our experts reported that
there was significant recovery of fibers in the images as com-
pared to rawdata. Their typical workflowwould involve cre-
ating MIP of images and visualizing them in ImageJ [53].
Using ImageJ, despite increasing gamma value in the raw
data, they were unable to visualize some of the fibers that
were appropriately segmented by our model. However, for
evaluating the segmentation results generated by our model,
they created MIPs of both the raw and segmented data and
overlaid the images in ImageJ. Our experts were excited to
see the dramatic improvement in recovery between raw and
segmented images that could now be visualized using their
typical workflow (ImageJ). See Fig. S3, available online in
SupplementaryMaterial for 2 examples.

10.5 Registration Method Evaluation

NeuroConstruct was used to register six individual serial
sections from the mouse brain specimen (see Sec. 4). Each
section was 16bit, 21937�35616 pixels �47 TIFF images,
totaling approximately 55GBs per stack. The coarse registra-
tion took 25 minutes. We cropped a 5000�5000 ROI of size
6GB. The automatic fine alignment process for six ROI stacks
took 33 minutes. In total, coarse-to-fine registration of a 300
mm sample took 68 minutes. We also tested a use-case for re-
registration after correcting a misaligned stack, taking an
additional 25 minutes. In Fig. S4, available online in Supple-
mentaryMaterial, we show two focused neurons, studied by
our experts for evaluation. Following are their discussions:

Utility of NeuroConstruct registration in domain science.
Advances in genetic labeling have allowed us to selectively
label specific neuronal subsets. The next frontier is to follow
these neurons through 3D to allow complete reconstruction
of single neurons and their entire arbors (dendritic branches
(shown in Fig. 4)). Without a proper reconstruction method,
quantitative analysis of WFM data typically does not make
claims about individual neurons and their trajectories, but
instead about neuron populations. Normal workflow
includes subsampling stacks across a region to get a density
of labeled neurons and processes from anterior to posterior.
These processes would not come from a single soma, but
instead gives a population estimate of labeled fibers. Using
NeuroConstruct, we register serial slices, reconstruct and
isolate single neurons and their labeled arbors. Our registra-
tion now allows for a number of applications and analyses
that were previously impossible withWFMdata.

Quantitative analysis of arbor length. Prior to registration,
we were only able to visualize somas and extensions from
single stacks and unable to determine the arbors morphol-
ogy through the anterior to posterior axis. This allows us to
visualize the single neuron arbors complexity through serial
sections, and compute extensions length. Registration
helped to recover 5255mm of the processes length from the
selected sub-ROI in Fig. S4, available online in Supplemen-
tary Material.

Quantitative analysis of arbor branch points. Using the infor-
mation gathered from the registered dataset, another analy-
sis of interest is the number and location of branch points
from the soma. The morphological diversity of these
branches could tune different aspects of cell communica-
tion. Prior to registration, analysis on a single stack would
have shown one or two branches. Following NeuroCon-
struct reconstruction process, it is evident that there are 24
branch nodes visible. The analysis determines the distance
between branch points and the soma, and arbor complexity.

Analysis of fiber integrity. A key feature in neuroanatomy
study is the health and dramatic deterioration and fragmen-
tation of cholinergic fibers in specific brain regions during
brain diseases, such as Alzheimer’s. The fibers integrity is
critical to maintain neural connectivity and function. Using
the registered dataset and the ability to visualize weak fibers
from the segmentation, experts now visualize alterations to
fiber morphology including swelling and fragmentation.
For example, we determine how far from the soma the frag-
mentation began in affected neuron processes, and how
much of the process remains intact and healthy.

TABLE 1
A Comparative Analysis of our Model Against

State-of-the-Art Models

Fig. 9. The neuron segmentation of a densely structured WFM image of
a brain medial septum section. Green, yellow, and blue colors represent
reconstructed neurites, reconstructed somas, and ground-truth segmen-
tation, respectively. (a) Raw image. (b) Reconstructed neurons overlaid
on the raw image. (c) Reconstructed neurites and the ground-truth seg-
mentation overlaid on the raw image.
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11 CONCLUSION AND FUTURE WORK

We presented NeuroConstruct, a novel end-to-end applica-
tion for the segmentation, registration, and visualization of
brain volumes, imaged using WFM. NeuroConstruct com-
bines deep learning 3D segmentation methods, a novel algo-
rithm for coarse-to-fine registration of brain sections, and a
hybrid approach to visualize recovered neurites. To gener-
ate a ground-truth set to train and test the model, we devel-
oped the Segmentation Toolbox, facilitating annotation of
WFM image stacks. We evaluated NeuroConstruct quanti-
tatively and qualitatively, along with experts’ analysis. Our
results show that NeuroConstruct outperforms the state-of-
the-art in all aspects of the design, including segmentation,
registration, and visualization of neurons in WFM images.

Our application is designed with the goal of helping neu-
roscientists to study cholinergic neurons in WFM images
and perform well in reconstruction and visualization of
WFM neurons. We tested our segmentation model on confo-
cal and two-photon microscopic images. Although our net-
work was trained using WFM image stacks, it could recover
most of the neurites in these stacks perfectly well. In the
future, we will revise the NeuroConstruct to create a univer-
sal application that reconstructs and visualizes images
acquired by other imaging modalities. We will incorporate
more features into our Segmentation Toolbox to increase
efficiency and simplicity of annotating WFM neurons. Note
that the reconstruction quality can be further improved by
training the model with a larger variety of neurites.
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