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NeuRegenerate: A Framework for
Visualizing Neurodegeneration
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Abstract—Recent advances in high-resolution microscopy have allowed scientists to better understand the underlying brain connectivity.
However, due to the limitation that biological specimens can only be imaged at a single timepoint, studying changes to neural projections
over time is limited to observations gathered using population analysis. In this paper, we introduce NeuRegenerate, a novel end-to-end
framework for the prediction and visualization of changes in neural fiber morphology within a subject across specified age-timepoints.
To predict projections, we present neuReGANerator, a deep-learning network based on cycle-consistent generative adversarial network
(GAN) that translates features of neuronal structures across age-timepoints for large brain microscopy volumes. We improve the
reconstruction quality of the predicted neuronal structures by implementing a density multiplier and a new loss function, called the
hallucination loss. Moreover, to alleviate artifacts that occur due to tiling of large input volumes, we introduce a spatial-consistency
module in the training pipeline of neuReGANerator. Finally, to visualize the change in projections, predicted using neuReGANerator,
NeuRegenerate offers two modes: (i) neuroCompare to simultaneously visualize the difference in the structures of the neuronal
projections, from two age domains (using structural view and bounded view), and (ii) neuroMorph, a vesselness-based morphing
technique to interactively visualize the transformation of the structures from one age-timepoint to the other. Our framework is designed
specifically for volumes acquired using wide-field microscopy. We demonstrate our framework by visualizing the structural changes
within the cholinergic system of the mouse brain between a young and old specimen.

Index Terms—Neuron visualization, volume visualization, volume transformation, wide-field microscopy, machine learning.

✦

1 INTRODUCTION

THE field of connectomics [1], has been one of the major
scientific endeavours of the 21st century, with its goal to

reconstruct a complete structural and functional connectivity
of the brain across multiple scales of spatial and temporal reso-
lution. Advancements in microscopy, particularly the potential
to acquire high-resolution 3D images of the brain coupled
with novel visualization techniques [2], [3], [4], [5], [6], have
provided neuroscientists with the tools to reconstruct and better
understand brain connectivity. As a result, findings aided by
these methodological advancements have challenged previous
knowledge of system structure and organization. One such sys-
tem is the cholinergic system. Since the early 1970s, alterations
to the cholinergic system have been considered hallmarks of
late-stage cognitive impairment. While focus initially has been
on the loss of cell bodies, it has now become increasingly
evident that neural projections – the connections these neurons
make with other regions of the brain – are more vulnerable
and susceptible to fragmentation and loss, far before overt
signs of impairment. To this end, neuroscientists are becoming
increasingly interested in using visualization techniques to
understand the morphological changes that occur to cholinergic
fibers across lifespan.

The task of studying neuronal structures at micro-scales
require physically sectioning brain samples, processing for cell-
type specific labeling, imaging with a microscope, and employ-
ing visualization techniques for qualitative and quantitative
evaluation. Such a workflow means that samples can only be
imaged at a single timepoint, thereby forcing researchers to
use population analysis to study changes in neuronal structure,
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across lifespan. That is, observations can only be made about
general changes in the state of the fibers across timepoints
across subjects (Fig. 1). What is needed is a more precise
understanding and a complete visualization of the profile of
neurites at an individual level – within-subject analysis.

To this end, we present NeuRegenerate, a novel framework
that predicts and reconstructs neuronal structures of an in-
dividual specimen, across specified age timepoints-of-interest.
NeuRegenerate has two main modules: a deep-learning module
called neuReGANerator and a visualization module. Based on
their usual protocol, neuroscientists image a brain region from
a population of animal subjects, at the ages-of-interest under
study. Using this collection of wide-field (WF) microscopy
volumes, neuReGANerator is designed to learn the structural
features of neurites that translate across the age domains. Since
the nature of this workflow lacks paired ground-truth corre-
spondence between age domains, we utilize extended cycle-
consistent generative adversarial networks (XDCycleGAN) [7]
as the underlying model. For our task at hand, to achieve a
volume-to-volume translation specifically for brain microscopy
data, we have designed neuReGANerator to consist of 3D con-
volutional neural networks, a density multiplier to emphasize
the reconstruction of neuronal structures over background vox-
els, and a hallucination loss to avoid phantom data generation.
Moreover, we introduce a novel spatial-consistency architecture
in our training pipeline to facilitate the learning of connectivity
information of fiber structures and alleviate tiling artifacts in
the model output volume. NeuReGANerator is evaluated using
qualitative assessments by domain scientists.

The inherent blurring nature of WF microscopy (WFM)
data makes effective and meaningful visualization of neu-
ronal data a challenging task. To visualize changes in neurite
structure across age timepoints, reconstructed using a trained
neuReGANerator, our framework provides two visualization
modes: neuroCompare and neuroMorph. NeuroCompare, is a
visualization that simultaneously compares the fiber profiles of
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Fig. 1. The axonal projections of (a) a 6-week, and (b) a 9-month mouse,
imaged using WFM. We can observe that they appear connected and
healthy at 6-weeks, and fragmented and thin at 9-months (red arrows).

the input and predicted brain samples, using both structural
and bounded representations. For the structural representation,
we encapsulate neuronal structures extracted from the old-age
domain inside translucent iso-surfaces of their corresponding
young-age structures. To achieve this, we also address the
challenge in extracting surfaces of neuronal data from WFM
volumes. In the bounded representation, neuroscientists can
observe the structural representation of predicted neurites with
respect to direct volume rendering of the original input volume.
For a more interactive visualization, neuroMorph, a vesselness
(tubular-shaped morphology) based volume morphing tech-
nique, reconstructs meaningful transformations between the
original volume and the neuReGANerator output.

NeuRegenerate is designed based on the goals provided by
our neuroscientist team members. The results and visualiza-
tions presented in this paper use data that are currently being
used to study the fragmentation and loss of cholinergic fibers
between 6-week (young) and 9-month old (aged) mice, for the
medial septum region of the brain. The contributions of this
paper are as follows:

• To the best of our knowledge, the first novel framework
for the prediction, reconstruction, and visualization of
changes that occur in the neuronal profile of an individ-
ual specimen;

• A deep-learning model specific to learning neuronal
features from brain optical microscopy volumes; and

• A vesselness-based volume morphing technique for vi-
sualizing changes in neurite projections across lifespan.

2 RELATED WORKS

Deep-learning for neuronal data. Deep learning has shown
promising results for tasks such as neuronal structure segmen-
tation [8], [9], [10], [11], neuron tracing [12], [13], and data
generation [14]. For using neural networks for classification,
Zhou et al. [15] have developed DeepNeuron, a toolbox for
neuron tracing and analysis. For reconstructing densely la-
belled axons in 2-photon microscopy, Skibbe et al. [16] have
proposed a probabilistic axon tracking algorithm in local-to-
global model. Li et al. [17] have described a network to extract
features for easy navigation though neuron databases. To tackle
large microscopy volumes processing, Liu et al. [18] have pre-
sented a method for training a network on gigapixel images.
For synthesizing 3D volumes, Wu et al. [14] have proposed
Deep Z, a digital image refocusing framework for fluorescence
microscopy using a trained deep neural network to digitally
reconstruct 3D samples using a single 2D WF image.

One important, common challenge faced by these proposed
works is the large size of microscopy data that limits GPU-
accelerated deep-learning tasks. Common solutions include
cropping, tiling, or transforming the volume into 2D space.

In NeuRegenerate, we present a novel approach in our deep-
learning model for processing cropped tiles that alleviates
artifacts due to tiling and significantly improves the quality of
reconstructions by considering local neighborhoods. Existing
works focus mainly on extracting neuronal data from mi-
croscopy volumes. To the best of our knowledge, no work uses
deep-learning to reconstruct and predict neuronal structures
across different timepoints of the lifespan from microscopy
volumes at micrometer resolution.

Recently, deep-learning has been used for image-to-image
translation, such as style transfer and image enhancement.
Pix2pix [19], for example, is a deep learning model that
combines an L1 loss with a conditional GAN [20] to handle
image-to-image domain translation. This model requires paired
groundtruth data from two given domains, which is not avail-
able in our context. To address this constraint, unpaired image-
to-image domain translation approaches including CycleGAN
[21] and like approaches [22], [23] are used.
Visualization methods. Techniques developed for the recon-
struction, visualization, and analysis of complex neural con-
nection maps have paved the way for neurobiologists to gain
insights into the underlying brain structure and function. Vol-
ume renderers have been developed for 3D reconstruction and
visualization of brain microscopy images. Mosaliganti et al. [24]
have developed methods for axial artifacts correction and 3D
reconstruction of cellular structures from optical microscopy.
Nakao et al. [25] have presented an interactive visualization and
proposed a transfer function design for 2-photon microscopy
volumes based on feature spaces. Wan et al. [6] have developed
interactive rendering for confocal microscopy data that com-
bines multi-channel volume rendering and polygon mesh data.
For an immersive approach, Usher et al. [26] have introduced
virtual-reality for the tracing of neurons. Due to blurred nature
of WFM data, simply applying volume rendering does not
yield effective neurons visualization. Janoos et al. [27] have pre-
sented surface representation for the reconstruction of neuronal
dendrites and spines from optical microscopy. Their solution,
however, is meant for 2-photon microscopy, which does not
exhibit blurring challenges as in WFM.

While we directly visualize the change in neuronal struc-
tures across age, a large body of work is in time-dependent
volume visualization. Widanagamaachchi et al. [28] have em-
ployed feature tracking graphs. Fang et al. [29] have analyzed
volume differences for medical applications. Lu and Shen [30]
have proposed interactive storyboards composed of volume
renderings and descriptive geometric primitives. Limited to
a narrow range of time series to visualize our predictions,
we derive motivation from Frey and Ertle [31] who have
introduced a volume morphing technique and demonstrate its
utility in reconstructing a full sequence for temporal data. A
large body of work is available for automatic volume morphing
techniques [32], [33], [34], [35]. While these works are designed
to produce a morphing schedule for a source to a target volume,
our proposed algorithm in neuroMorph morphs an entire set
of neurites in the volume. Moreover, neuroMorph takes into
account the specific vesselness property of the neurites to assign
morphing paths for in-between volumes.

3 DOMAIN BACKGROUND AND GOALS

Along with other neuroscientists, we have recently observed
that cholinergic fibers are vulnerable early-on in aging, and
susceptible to loss far sooner than previously understood.
These fibers originate from the cell body and project widely
across the brain, propagating information from one region to
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another and facilitating coordination to support both simple
and complex behaviors. Given this, a large focus of our work
has been devoted to identify vulnerable and resilient regions
of the cholinergic system and the progression of changes that
occur to fiber integrity during aging. An attempt to do this is by
using diffusion tensor imaging or diffusion spectrum imaging.
These techniques, though useful for repeat investigation in
the same subject, provide broad information about tracts or
bundles of fibers, whereas the changes we expect early on in
aging are at a finer scale of individual fibers. Visualization of
these fibers across brain regions and across lifespan will help
neuroscientists understand the relationship between changes
to the cholinergic system and changes to cognition. Thus, we
define the following goals for NeuRegenerate development:

G1: A framework that can predict a plausible mor-
phology of cholinergic fibers of an individual specimen brain
sample, for a future or past age timepoint. While we can
examine fibers at discrete timepoints, it is challenging to get a
sense of the individual differences in fiber density within sub-
jects, given the limitations presented by standard workflows.
Specific to neurodegeneration, this accounts for reconstructing
fiber thickness and continuity due to fragmentation. Moreover,
the framework should account for differential vulnerability or
resilience across regions of the brain, as observations suggest
fibers are affected at different rates in different regions.

G2: A visualization application that can provide neu-
roscientists with an intuitive method for analyzing the extent
of changes in fiber morphology between the input microscopy
volume and the reconstructed output predicted by the frame-
work defined in G1. Particularly, based on the motivation be-
hind the scientific investigation, visualizing fiber morphology
becomes more significant than rendering voxel intensity values
of raw microscopy volumes. Moreover, a time-series represen-
tation depicting the progression of the structural changes across
timepoints will be useful to visualize the data in a continuous
manner, not only for experts, but also to intuitively demonstrate
predicted results to non-experts.

G3: The framework should support WFM data as input.
WF [36] is a type of fluorescence microscope, widely used as
primary imaging modality for experimental investigations. Its
popularity is mainly due to large imaging field-of-view and
faster imaging time (compared to light-sheet and confocal mi-
croscopes). Because of these two features, imaging consecutive
slices, rather than subsampling (as commonly done in confocal
imaging) is standard, allowing for acquisition of continuous
information. However, WF data suffer from degraded contrast
between foreground and background voxels because of out-of-
focus light swamping the in-focus information, low signal-to-
noise ratio, and poor axial resolution. To this end, the prediction
component of the framework should be resilient towards back-
ground noise and the visualization components should address
the challenges of rendering WFM data.

4 NEUREGENERATE FRAMEWORK

Based on the requirements defined by our neuroscientist collab-
orators, NeuRegenerate consists of two parts: (1) deep-learning
model, neuReGANerator (Sec. 4.1); and (2) using the trained
model to predict, reconstruct, and visualize the neuronal profile
changes between the age timepoints-of-interest (Sec. 4.2). Fig. 2
illustrates an overview of this framework.

4.1 Deep-Learning Network neuReGANerator
The current inability to sample fiber morphology at a mi-
crometer resolution for multiple timepoints, as subjects have
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Fig. 2. NeuRegenerate framework for (a) training and (b) visualiza-
tion. By providing a collection of region-of-interest WFM brain volumes,
neuReGANerator learns the structural features that are translated be-
tween the specified age timepoints. Once trained, neuReGANerator
predicts fibers for the respective age translation. We provide 2 visualiza-
tion modes: (i) neuroCompare: simultaneous visualization of predicted
result and input data (using structural view and bounded view), and
(ii) neuroMorph: interactive transformation of input volume to predicted
result using our morphing technique.

to be sacrificed and sectioned for imaging, makes the use of
deep-learning methods for predicting fiber structural changes
a viable and necessary solution. In recent times, due to their
ability to solve image-to-image translation tasks, GANs [37]
are becoming a popular deep-learning tool for the synthesis
and transformation of medical data across different domains
and imaging modalities [38], [39], [40]. GANs are networks
that learn patterns in the data by training two models si-
multaneously: a generator that captures the characteristics of a
training dataset and a discriminator that distinguishes between
samples from the training data and those generated by the
generator. The two models are trained in a zero-sum game
until the generator learns to reconstruct data that the discrimi-
nator cannot distinguish from the original dataset. In principle,
GANs reconstruct samples by learning the distribution of the
output domain, however, for tasks where there is a meaningful
correspondence between two domains, GANs are structured
in a conditional setting [19]. A conditional GAN uses paired
groundtruth correspondence between two specified domains
to learn a unique solution that translates features in the input
domain to a sample with features of the output domain.

Paired ground-truth correspondence can be difficult or ex-
pensive to obtain, or in our case, impossible. To overcome this,
cycleGAN [21] is designed to learn the bidirectional translation
of image domains in the absence of paired training examples.
CycleGAN captures the distinct characteristics of the image do-
mains and learns to translate those characteristics across the do-
mains. It consist of two GANs, F : X → Y and G : Y → X , that
are trained simultaneously using a cycle consistency loss. Cycle
consistency enforces that an image should be reproducible
when translated to a different domain and reverted back. That
is to say, in mapping an element from one domain to the other,
and back, the model should reconstruct the original element:
x → G(x) → F (G(x)) ≈ x and y → F (y) → G(F (y)) ≈ y.
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Additionally, an adversarial loss ensures that the translated
images reside in the corresponding data distribution. In some
cases, an input domain is lossy (a domain which has multiple
solutions) and thus XDCycleGAN [7] enforces the network
to better understand the lossy domains, by introducing an
extended cycle consistency loss in the lossy domain.

This motivates neuReGANerator, a volume-to-volume
translation model, using XDCycleGAN, that learns the rela-
tionship of neuronal features across specified age timepoints
and, as a result, visualize changes within individual specimen.
Fig. 2(a) illustrates this concept. As specified in G1, for any
neurobiological system, the degradation of fiber health and
thickness varies in different regions of the brain. Therefore, to
train neuReGANerator, a collection of a particular region of the
brain, from specimens of two age timepoints-of-interest have
to be prepared. We use the terms young (Y ) and old (O) in this
paper to refer to the relative ages.

NeuReGANerator is designed specifically for optical mi-
croscopy brain volumes. Our work addresses known issues
with cycleGANs that hallucinate and remove features [10] and
embeds information to trick the loss functions [41]. To this end,
we describe a density multiplier (Sec. 4.1.1) and a new loss
function, the hallucination loss (Sec. 4.1.2). Moreover, due to
limited memory bandwidth of commodity GPUs, input sizes
for GPU-accelerated deep-learning models become restricted,
especially for processing volumetric data. To alleviate artifacts
that occur from tiling large input volumes, we introduce a novel
spatial-consistency architecture (Sec. 4.1.3). Lastly, in Sec. 4.1.4
we mention modifications that aid in training the network and
significantly improve the quality of the reconstructed results.

4.1.1 Density Multiplier
The loss function enforcing cycle-consistency constraint, Lcyc,
is an L1 loss, that uses the mean difference between the
original and reconstructed images. Depending on the region
of the brain, the ratio of foreground to background voxels vary.
While training, if samples have more background voxels than
foreground voxels, then in an effort to quickly minimize the loss
function, the model concentrates to learn the reconstruction of
the background. This is because background intensities are easy
to learn and due to a larger voxel count their contribution to the
loss function is significant. Along such a learning trajectory, if
the model encounters a data sample with more foreground than
background voxels, the loss value skyrockets. Such occurrences
lead to heavy fluctuations in the cycle-consistency loss and as a
result the network struggles to converge.

One possible solution is to tune the network’s parameters
and weights to help it converge. However, our goal is to design
a model that requires minimal parameter-tuning. Therefore,
we introduce a dynamic weighting method for the cycle-
consistency loss based on the density of the volume. It is com-
mon in classification tasks to put higher weights on samples
of underrepresented classes. Similarly, we apply this concept
on a voxel basis. We classify voxels based on a threshold and
use the number of foreground voxels to determine the weight
for individual samples. In other words, the density of a sample
delegates its contribution to the loss.

For a domain A, the cycle-consistency loss is calculated
using:

Lcyc(G,F,A) = Ea∼pdata(A) δ
(
a, F (G(a))

)
· ∥F (G(a))− a∥

(1)

where the density multiplier, δ, is defined as:

δ(a, arec) =
1

totalV oxels− sharedBackground(a, arec)
(2)

(c)

(b)

(a)

Fig. 3. Our spatial-consistency module improves the reconstruction
quality of the output volume. For an input raw WFM volume (a), the
results without and with spatial-consistency are shown in (b) and (c),
respectively. We can observe that in our results (c), tiling artifacts are
reduced and the intensity values of foreground and background voxels
across tiles are smoother and consistent, as pointed out by the yellow
arrows. Moreover, the reconstruction of neurites close to the tile borders
are improved, as pointed out by the blue arrows.

4.1.2 Hallucination Loss
To the best of our knowledge, there are no general approaches
to resolve phantom artifacts generated by cycleGANs. To ad-
dress this issue, we introduce a hallucination loss that is novel
for the task at hand. Based on domain knowledge of neu-
rodegeneration, we design this loss to penalize the network
from generating phantom structures and restrict reconstruc-
tions to underlying neuronal structures in the input data. In
neurodegeneration, all neuronal structures found in the old
domain ought to exist in the young domain reconstruction. In
reverse, neuronal structures reconstructed in the old domain
should originate from structures present in the young domain.
Assuming that VO is the old-domain volume, and VY is the
young domain volume, we introduce Lhallucination as:

Lhallucination(O, Y ) = Lho(O) + Lhy (Y ) (3)

Lhy (Y ) = λy ·δ(VG(Y ), VY )·
∑

min(max(VG(Y )−VY , 0), 1) (4)

Lho(O) = λo ·δ(VG(O), VO)·
∑

min(max(VO−VF (O), 0), 1) (5)

Essentially, this function masks intersecting voxels from both
domains with a foreground signal. A loss is incurred propor-
tional to all foreground voxels in the young domain that are
not in the mask. By multiplying a desired weight, λ, to the
hallucination loss, the network is penalized accordingly for
violating the fact that all structures in the young domain should
be composed of structures from the old domain.

4.1.3 Spatial Consistency
High resolution imaging of brain specimens result in volume
data of extremely large sizes. For instance, a mouse brain
slice with dimensions 7mm × 5mm × 20µm, imaged using
WFM, yields a 10 GB volume. In practice, a large-sized input
is either scaled to fit in GPU memory or the input data is
tiled and processed individually. However, these approaches
are not viable solutions for our task. Scaling down the input
results in loss of data signals and cropping isolates continuous
information in the tile from its local neighborhood.
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In the latter approach, a large input is divided into small
tiles that can fit into the GPU memory for processing. The
choice of tile size becomes critical as they need to be large
enough to contain the essential features that are necessary for
the deep-learning network to properly training. Once trained,
the input volume is divided into smaller, overlapping tiles.
The output tiles from the network are then cropped from their
center and stitched together to reconstruct the final output vol-
ume. However, since the network processes each tile separately,
intensities of neuronal structures and background voxels vary
across the output tiles, resulting in intensity inconsistencies
and stitching artifacts in the final volume, as shown by the
yellow arrows in Fig. 3(b). Moreover, predicted neurites are
reconstructed using input tiles that fully contain the features
learnt by the network and are ignored otherwise, thus resulting
in the partial reconstructions.

In order to alleviate the stitching artifacts and to produce
better quality results, we introduce a spatial-consistency mod-
ule in the training pipeline of neuReGANerator. Using this
approach, the network learns to include information in an input
tile’s local neighborhood . Fig. 4 illustrates the modifications we
introduce in our network. We explain the spatial-consistency
module with a single direction, however, the concept is applied
to both directions.

For an input volume with tiling dimensions d × d × z, we
specify ∆ as the neighborhood size. Therefore, a large-sized
volume is divided into input tiles of size (d + 2∆)2 × z. While
training, neuReGANerator further divides the input tile into
five smaller tiles, each of size (d + ∆)2 × z: four overlapping
quadrants - top left, top right, bottom left, bottom right, and a
center-tile from the input tile centers. The four quadrants are
passed to the generator. From the generator output, a tile of size
( d+∆

2
)2 × z is cropped from the center of each reconstructed

quadrant, to create the corresponding reconstructed center.
Next, the reconstructed top left, top right, bottom left, bottom right,
and center tiles are passed to the discriminator. This allows the
discriminator to not only ensure that the generator is recon-
structing a valid cross-domain result, but also that the central
region of a generator output is spatially consistent with its
neighborhood data. Finally, each input, reconstructed quadrant
(multiplied by a desired weight w1), and center (multiplied by a

desired weight w2) tiles are used to calculate the loss functions
for training the network. Since center is the primary tile for
reconstruction, we suggest w2 > w1. The spatial-consistency
results are shown in Fig. 3(c).

4.1.4 Implementation Details
To design neuReGANerator, we have used cycleGAN’s ar-
chitecture implemented by Jun-Yan et al. [21] using PyTorch,
as the base structure. As neurGANerator solves a volume-
to-volume translation task, we redesigned cycleGAN to use
3D convolutions in its generator and discriminator. Details of
the neuReGANerator training weights and parameters used
specifically for our task are provided in the Results section (Sec.
5). To improve training, we replace batch normalization in the
discriminator with spectral normalization proposed by Miyato
et al. [42], to mitigate mode collapse and exploding gradients.

Due to size limitations of the microscope chamber and
increased scattering of light in thicker biological slices, physical
sections of brain samples are very thin (20 - 50 µm on aver-
age). Therefore, to accommodate the input volume’s shallow
z-depth, we reduce the kernel size of the first and last convo-
lutions in the generator from 7 to 5 and set the stride in the z
dimension to be 1 in the discriminator.

We also address an issue with normalizing intensity values
of the input volume for neuReGANerator. In practice, intensi-
ties are normalized between 0 and 1, or -1 to 1, and pushed
into the GPU as 16- or 32-bit floating point numbers. Fig. 9
includes the histograms of two raw input volumes of a region
of the brain imaged using WFM. We can observe that 95%
of the voxels have intensity values less than the mean and
a single standard deviation. This makes it difficult for the
network to distinguish between background and foreground
voxels after applying 3D convolutions. Normalizing input tiles
would result in incoherent intensity values across the stitched
output volume, as the intensity values from each output tile will
be scaled to its local minimum and maximum value. Therefore,
we perform a non-linear scaling before normalizing and tiling
the input volume. From our experiments, we concluded that
scaling the voxels having 0 - 95th percentile intensity values to
0% - 75% of the maximum intensity of the volume, and the 96 -
100th percentile intensity values to 76% - 100% of the maximum
intensity, yield favourable results.

As there are multiple solutions to reconstruct fragmented
projections and one unique solution to reconstruct a young
domain neurite, we have incorporated XDCycleGAN by im-
plementing the extended cycle-consistency loss in the young
to old direction to deal with the lossy domain translation. The
extended loss is defined as:

LxCyc(G,F, Y ) = Ey∼ydata(Y ) δ
(
G(y), G′(y)

)
· ∥G′(y)−G(y)∥

(6)
where G′(y) = G(F (G(y))). This enforces the following map-
ping: ô → F (ô) → G(F (ô)) ≈ ô, where ô = G(y). This is
illustrated in the neuReGANerator training box in Fig. 2(a).

4.1.5 Full Objective
Conclusively, the full objective for training the neuReGANera-
tor, with cycle weights ΛO and ΛY , is:

Ltile(G,F,DO, DY ) = LGAN (F,DO, ytile, otile)

+ LGAN (G,DY , otile, ytile)

+ ΛOLcyc(G,F, otile) + Lhallucination(otile, ytile)

+ ΛY LxCyc(G,F, ytile)
(7)
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Ltotal = w1LtopLeft(G,F,DO, DY ) + w1LtopRight(G,F,DO, DY )

+ w1LbottomLeft(G,F,DO, DY ) + w1LbottomRight(G,F,DO, DY )

+ w2Lcenter(G,F,DO, DY )
(8)

In training neuReGANerator, the network aims to solve:

G∗, F ∗ = arg min
G,F

max
DO,DY

L(G,F,DO, DY ). (9)

4.2 Visualization
To qualitatively analyze changes in fiber morphology between
age timepoints, neuroscientists compare microscopy data us-
ing a population of specimens. Typically, this involves using
rudimentary methods such as applying maximum intensity
projection to flatten the volume, thresholding intensity values
to remove background and noise from the data, and using
visual cues to make general observations within the speci-
men collection. NeuRegenerate offers a complete visualiza-
tion framework for studying changes in micrometer-scale fiber
morphology, within a single subject, for two age timepoints-
of-interest. In addition to volume rendering (Sec. 4.2.1), we
design visualization components based on requirements out-
lined by neuroscientists in goal G2, for the qualitative analysis
of cholinergic fibers in 3D. Using the predicted structures
reconstructed by neuReGANerator, we provide users with two
modes, neuroCompare (Sec. 4.2.3), and neuroMorph (Sec. 4.2.4).
The underlying assumption in developing these visualizations
is derived from domain knowledge (by population analysis)
that neuronal fibers undergo fragmentation and loss during
aging. Specifically, neuronal structures of a young brain are
more connected and healthier compared to an old brain. In
designing the visualization modes, we also address the chal-
lenges of WFM data mentioned in goal G3 (Sec. 4.2.2). Finally,
to reduce the risk of over-interpretation, we add a label to the
application interface that identifies the data (real or predicted)
that the user is visualizing. A screenshot of NeuRegenerate
visualization application is shown in Fig. 5(i), and a video
demonstrating the NeuRegenerate visualization modes is in the
Supplementary Materials.

4.2.1 Volume Rendering
To render raw WFM data, we use VTK [43] GPU volume
mapper with 1D opacity and color TFs. By observing the neuro-
scientists’ manipulation of TFs to visualize neuronal structures
in WFM volumes, we designed a preset for opacity and color
mapping for our application. We noticed that the preferred
mapping is a combination of two linear functions. For opacity,
the mapping consists of: 0 to 0.75 for 0 to 95th percentile of
voxel intensity values, and 0.76 to 1.0 for 96 to 100th percentile
of the intensity value (on a normalized scale where 1 is the
highest opacity value). Notice that this is the same mapping we
use to normalize the input volume to the neuReGANerator in
Sec. 4.1.4. Likewise, we use the same combination for mapping
color values. Typically, among neuroscientists red and green
are most common colors used for visualizing microscopy data.
Therefore, we chose black to red to render the old-age domain,
and black to green to render the young-age domain. The TFs are
editable and users can add points on the TFs to create more
segments, move points to modify the mapping, and change
the color mappings (shown in Fig. 5(d)). For this paper, we
use the above mentioned presets to demonstrate our results.
We also include gamma correction and intensity thresholding
as additional parameters, as domain experts often use them in
their workflow.

4.2.2 Processing WFM Volumes
Domain scientists are primarily interested in visualizing neu-
ronal structures. However, due to the inherent out-of-focus
blurring nature of WFM data, adjusting visualization param-
eters or directly applying surface rendering techniques to the
raw volume is a tedious and ineffective task. Current algo-
rithms for tracing and segmenting neuronal structures are best
suited for confocal and light-sheet microscopy and they per-
form poorly on WF data, especially for the genetic labelling and
the neurobiological system studied in our task. Our previous
work [5] discusses the challenges of WFM and presents a pre-
processing technique for the meaningful rendering of neuronal
data. For NeuRegenerate, we extract vessel-like neurites from
WF volumes by first applying our gradient-based distance
transform function [5] to suppress background voxels. Next,
given its ability to exhibit a high and uniform response for
vessels with variable morphology, we apply Jerman’s enhance-
ment filter [44] to the processed volume. Parameters for the
enhancement filter (voxel spacing and sigma) are specified
by the user on loading the input volume. Voxel spacing is
determined from the microscope meta-data and sigma is the
range of the neurite cross-sectional diameter, entered based on
the user’s domain knowledge of the data. The outputs from
the vesselness filter are the best responses to the enhancement
function using a multiscale Hessian matrix. However, neurites
with weak intensity values exhibit a low response in regions
of strong blurring or presence of high-intensity neurites, and
often get thresholded in the process of removing noise from the
filter response. To resolve this, we adopt a multiscale intensity
approach for recovering Hessian gradients of weak neurites.
Intensity scales are determined using the piece-wise opacity
TF adjusted by the user. Finally, to remove artifacts from the
filter response, users interactively specify a minimum threshold
value using a slider in the application interface.

4.2.3 neuroCompare Mode
In this mode, we simultaneously visualize neuronal structures
from two age domains using structural and bounded views.

Structural View: We render neuronal fibers from the
young-age volume as hollow green translucent structures en-
capsulating the fragmented projections from the old-age vol-
ume, rendered in red. The iso-surface of the neuronal struc-
tures are extracted from the processed WFMvolume using
VTK marching cubes filter. Fig. 5(ii) shows an example of our
structural representation. The red structure in Fig. 5(e) is the
structural rendering of a 9-month neuronal data (processed
from the WF volume shown in Fig. 5(i)), and the green structure
in Fig. 5(f) is the structural rendering of its corresponding
predicted 6-week structure. Fig. 5(g) demonstrates the final
combined structural representation. Using this mode, users
can observe the morphological profile of the original 9-month
neuronal data (in red), in comparison to its possible younger
state (in green).

Bounded View: This view is designed to allow ex-
ploration of the input volume with respect to the predicted
neuronal data. The input volume is rendered using direct vol-
ume rendering with TFs and enhancement parameters, whereas
the predicted neuronal data is rendered as iso-surfaces. If the
input volume belongs to the young domain, bounds from the
thresholded vesselness filter is used to mask the foreground
from the background voxels. Conversely, vesselness bounds of
the predicted young structures are used to mask voxels if the
input volume belongs to the old domain.

The utility of such a representation is that volume rendering
parameters, such as thresholding and gamma correction, are
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Fig. 6. Example of our bounded view visualization. For each direction,
a volume rendering of the bounded raw input WF data is shown in
(a), followed by the surface rendering of its predicted structure in (b).
Parameters such as intensity thersholding and gamma correction can
be adjusted for the volume, as demonstrated in (c).

(a) Growing / Shrinking (b) Splitting / Merging
i) associated ii) null

Fig. 7. The path for dynamic voxels follow either (a) growing/shrinking or
(b) splitting/merging action.

widely used by neuroscientists to observe features of neuronal
data in the microscopy volume. Since the volume reconstructed
by neuReGANerator is solely a prediction, allowing its visual
exploration can carry a risk of over-interpretation by the user.
Therefore, for this view, we restrict volume visualization of the
predicted data to iso-surfaces, and only the real input data to
be explored using volume rendering and TFs. Fig. 6 shows
examples of the bounded representation for both age domains
and their predicted data.

4.2.4 neuroMorph Mode

The percentage fragmentation of fibers vary for different sub-
regions of the brain. Using neuReGANerator, neuroscientists

Algorithm 1: Path between dynamic voxels to static
voxels

Input: Static voxels s(O), and dynamic voxels d(Y )
I(Y )← d(Y ) ∩ s(O)
H← minHeap()
foreach α ∈ d(Y ) do α.dist←∞,
α.status = notAssociated

foreach α ∈ I(Y ) do
foreach neighbour β of α, where β ∈ d(Y ) do

β.dist = eucledianDistance(αx,y,z, βx,y,z)
β.status = associated
β.path← α
H.push(β)

end
end
while H is not empty do

α = H.pop()
α.status = associated
foreach neighbour β of α, where β ∈ d(Y ) and
β.status ̸= associated do

d = α.dist+ eucledianDistance(αx,y,z, βx,y,z)
if β.status = notAssociated then

β.dist = d, β.status = queued
β.path← α.path+ α
H.push(β)

else if β.status = queued then
if d < β.dist then

β.dist = d
β.path← α.path+ α

end
end

are interested to study the pattern of neurite fragmentation
and deformation, across regions of the brain, during the neu-
rodegradation process. Though this can be observed in the
structural mode, the high density of neuronal data in the
volume can make this analysis task overwhelming. To this
end, for a more illustrative and interactive understanding of
the morphological changes, outlined in goal G2, we develop
a morphing technique called neuroMorph. NeuroMorph is a
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progressive algorithm that computes meaningful transforma-
tions between a source and a target volume, specifically taking
into account the tubular-shaped morphology (vesselness) of the
neuronal fibers. Following the hypothesis that neurites undergo
fragmentation and thinning during aging, we classify voxels of
a neurite as static - neurite voxels that are in both the young
and old domain; or dynamic - neurite voxels that are only in
the young domain. For each neurite, we assign a path from its
dynamic voxels to the boundary of its correpoding static voxels.
We then perform a linear transformation along the assigned
paths, to reconstruct the neurites’ intermediate structures. It
is important to note here that the in-between volumes gener-
ated using neuroMorph serve only as a visualization for the
temporal deformation of the neurites across the specified age-
timepoints. For an accurate representation of the in-between
reconstructions, users will have to train the neuReGANerator
for the additional age-timepoints. To avoid over-interpretation,
the interface displays a prediction data warning label while the
user scrolls through the reconstructed structures.

The path for each dynamic voxel is based on one of
the following topological events: growing/shrinking or split-
ting/merging (Fig. 7). A special null case exists in the grow-
ing/shrinking event in which a young neurite does not have a
corresponding old neurite (Fig.7(ii)). Algorithm 1 describes our
path assignment approach. Since neurites can be processed in
parallel, we first extract the bounds of each neurite from the
structural representation of the young and old volumes and
pair intersecting bounds for computing the morphing trajec-
tory. For each paired neurite, we determine the set of voxels
from the young domain that intersect with the iso-surface of
its corresponding old domain as static. The remaining voxels in
the young domain are labelled as dynamic. Next, we use fast
marching [45] to construct a path from the set of static voxels to
each dynamic voxel. A path exchange is performed if a dynamic
voxel encounters a shorter path to a static voxel. For null case
neurites, we determine its mass center voxel as its static voxel.

To reconstruct intermediate volumes, we perform a linear
transformation with parameter σ ∈ [0, 1], over a regular grid,
along the assigned path of the dynamic voxels, starting from
the input age-domain to the output domain. For each dynamic
voxel of a neurite, the resultant intermediate volume in the
Y → O direction is the 1 − ceil(σ × pathLength) voxels
along its assigned path, and floor(σ × pathLength) voxels for
the O → Y direction. Fig. 8 demonstrates the result of our
neuroMorph algorithm for the neuronal data shown in Fig. 5,
with intermediate reconstructions from its input old neuronal
structures to its predicted young structure, for σ = [0, 1

3
, 1
6
, 1].

5 RESULTS AND EVALUATIONS

We demonstrate NeuRegenerate using 6 week (6wk) and 9
month (9mo) timepoints of cholinergic fibers of mice specimens.

Biological Prep: Samples were generated from a trans-
genic mouse line with a tau-enhanced green fluorescent protein
under the control of the ChAT promotor (ChAT-tau-eGFP)
labeling cholinergic neurons and extensions. At the appropriate
age mice brain tissue were serially sectioned at 20µm thickness
and imaged using an Olympus VS-120 WF microscope with
a numerical aperture of 0.95 at 40× magnification, and xy
resolution of 0.325µm/pixel and z spacing of 1 µm/pixel.

NeuReGANerator Input: 12 mice specimens were used
for our experiments, six from each age domain (6wk and 9mo).
In total, we trained NeuReGANerator using 6724 tiles per
domain. We determined that tiles of size 128 × 128 with ∆ = 32
best captured the neuronal information for spatial-consistency.

Thus, input data for training and testing were cropped into tiles
of dimensions 192 × 192 × 20. The testing tiles had an overlap
of 64 voxels in the x-y directions. For all results shown in this
paper, NeuReGANerator was trained for 20 epochs (134480
iterations) with a learning rate of 0.0002 for the first 10 epochs,
followed by a step decay with a multiplicative factor of 0.1 for
the last 10 epochs, for both the generator and discriminator. We
used λO = 10 and λY = 10 for the hallucination loss, ΛO = 10
and ΛY = 10 for Lcyc, and (w1 = 0.25, w2 = 0.5) for the spatial-
consistency weights.

Fig. 9 shows the output volumes predicted by NeuReGAN-
erator using input volumes from the medial septum region,
for each age domain. As described in Sec. 4.2, visualizations
in green represent the young (6wk) domain and red represents
the old (9mo) domain. Since the medial septum is very large
and dense, we extract two crops from each domain, Crop A
and Crop B, to present detailed results of our visualizations.
For each crop, Fig. 10 shows their respective structural view
visualization using neuroCompare and Fig. 11 demonstrates
the intermediate volumes reconstructed using neuroMorph.

We presented NeuRegenerate to neuroscientists, who are
experts in the study of cholinergic systems across lifespan, to
evaluate our framework. Sec. 5.1 provides an account of their
evaluation, followed by a case study in Sec. 5.2, that resulted in
a novel hypothesis towards an early-onset structural change in
aging. A discussion on using NeuRegenerate by the experts is
presented in Sec. 5.3.

5.1 Domain Expert Evaluation
We evaluated NeuRegenerate using a region of the brain we
have studied extensively using population data. The input
samples (shown in Figs. 9, 10, and 11) are prepared using a tech-
nique that provides a wide-spread labeling of most fibers of our
cell type of interest, allowing for broad, exploratory analysis.
By closely examining 20 input volumes, we have determined
that the predicted volume and visualization plausibly exhibit
age-related changes to fiber morphology and health. However,
given that the nature of this work lacks the ability to validate
prediction results using groundtruth, we performed a quan-
titative analysis using fiber density measure [46]. This metric
is widely used by neuroscientists to measure the density of a
neuronal network that manifests the health of communication
in the brain and is computed as the ratio of neurons to empty
volume in a region. We computed the density measure on the
training datasets (at 6wk and 9mo), as well as for the testing
data set and their reconstructed counterparts. Comparing the
percentage difference of fiber density across groups reveals that
despite individual variability that is expected across samples
(variability in absolute fiber density), neuReGANerator is able
to perform well on an individual basis (see Table 1).

TABLE 1
The fiber density measure for 6-week and 9-month show that
neuReGANerator preserves overall fiber density difference.

Fiber Density Percentage
Difference6wk 9mo

Training Dataset
6wk and 9mo 42.5% 6.8% 82.7%

6wk (input)
to 9mo (predicted) 27.1% 3.7% 85.5%

9mo (input)
to 6wk (predicted) 39.8% 5.8% 86.5%

One feature that we observed using neuroCompare was the
extent of fiber thinning that occurs in aging. Coupled with
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original 9 month-old projections
                t = 0 t = 1/3 t = 1/6

reconstructed 6 week-young
            t = 1

Fig. 8. NeuRegenerate aids neuroscientists in visualizing structural changes that occur within a specimen brain, across age: for a diseased mouse
data (left-most structure), we are able to predict and reconstruct its healthy neuronal fibers at a younger age (right-most structure). The two
in-between structures are generated using neuroMorph, that allows users to interactively visualize the neurodegeneration process.

Fig. 9. The results of neuReGANerator using 6-week and 9-month cholinergic neurons in the medial septum of a mouse brain. We focus on two
regions (Crop A and B) of dimensions 500×500×20. The green volume in (i) is a testing 6-week input. The red volumes in (a) are the corresponding
9-month predicted reconstructions of the cropped regions. The red volume in (ii) is a testing 9 month-old input. Similarly, the green volumes in (b)
are the corresponding 6 week-old predicted reconstructions. The plots at the bottom are histograms of the respective input volumes. The histograms
demonstrate the skewness of the voxel intensity distribution, thus making visualization of WFM volumes a challenge.

neuroMorph, this provided a unique comparative insight into
the proportion of thinning and fragmentation that contribute
towards the overall fiber loss, quantitatively determined using
fiber density measures. This is novel for our field and this type
of within subject visualization is beneficial in conveying our
findings to expert and non-expert audience.

A significant utility of NeuRegenerate is to evaluate pre-
dicted changes to fiber morphology in small, segregated popu-
lations of neurons that are functionally important to behavioral
sequences. For instance, spatial memory deficits are a known
feature of aging across species. To this end, we conducted an
experiment using an isolated 9mo sample as shown in Figs. 5
and 8. Since input volume contained only the projections of an
isolated neuron, we were able to verify the connections of the
fragmented fibers that neuReGANerator reconstructed, as in a
6wk state. Using neuroCompare and neuroMorph to visualize
the change in morphology between the predicted 6wk structure
and the real 9mo sample, we were able to observe degradation
patterns relative to attributes such as fiber thickness, distance
from the cell-body, branching morphology, and brain region
– something that we have not yet been able to do given
methodological limitations. This is specifically important for
understanding how cells that are functionally important for
performing specific spatial memory tasks change as a function
of age will be crucial to our understanding of age-related
cognitive impairment.

5.2 Case Study: Degeneration in the Cortex

Following the analysis of the medial septum, we conducted
a case study on the cortex – a region of the brain where the
cholinergic fibers are more resilient in aging and change to
fiber morphology across 6wk and 9mo samples is not expected.
We used NeuRegenerate and trained neuReGANerator for the
cortex of 6wk and 9mo mouse specimens, using parameters
and preparation method mentioned above, and visualized the
resulting change in fiber morphology for individual specimens.
On observing the raw volumes, similar to our knowledge and
expectation of cortical fiber morphology, we found that the
predicted results showed no fragmentation between the real
input and predicted volumes. Moreover, the fiber density of
this region resulted in around 5% loss of fiber density which
falls within the expected margin of biological variability, thus
reassuring structural resilience.

However, as we proceeded to evaluate using neuroCom-
pare, we were presented with a surprising result: the cortical
fibers were thinner in 9mo samples than in the 6wk samples
(shown in Fig. 12). This subtle difference is almost impossible
to observe with just population analysis and is not significantly
captured using the primary fiber density analysis. Upon closer
observation of population data images, we were able to corrob-
orate independently by measuring the average thickness of the
fibers in the collected samples.

This case exemplifies the utility of NeuRegenerate for bio-
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Fig. 10. The structural view visualizations for the cropped regions (Crop A and Crop B) shown in Fig. 9
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Fig. 11. Our neuroMorph visualization for the 9 months to 6 weeks Crop B example.
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Fig. 12. The structural view of the cropped cortical region.

logical research as it allowed for a novel observation towards
an early, detectable feature of morphology change in lifespan.
While it is true that the predicted outputs of this framework are
not accurate biological structures, they allow for the generation
of new questions and hypotheses and fill an obvious gap
in methodology that can only be overcome with significant
advances in long term in-vivo deep tissue imaging techniques.

5.3 Discussion
NeuRegenerate fills critical gaps in methodology and analysis
in the neuroscience field and, for the first time, has allowed a
within subject prediction of regional fiber changes with age.
Any previous attempts toward this endeavor have required
the use of population data which is not amenable to direct
overlap and subsequent evaluation of images in this way. It has
provided an opportunity for effective brain-wide exploratory
analyses. Typically, because of the labor-intensive nature of our
current image analysis workflow, we study regions where we
hypothesize changes in fiber morphology because of obvious
changes in functional output of the region (example, behavior).
The limitation with such an approach is that we do not know
what we are missing and have not yet been able to adequately
explore all regions of the brain. It is well established that there

exists broad regional and cell type specific heterogeneity in
degradation across lifespan. NeuRegenerate is the first frame-
work of its kind to break down the within-subject barrier and
allow for generation of new hypotheses. By studying a brain-
wide predicted fiber morphology change as output, we can
begin to predict a progression of cell-type X region specific
vulnerability across lifespan. Though this paper focuses on
lifespan, this framework will be instrumental in studying the
relationship between brain structure and function in normal
aging and using it to compare to other critical areas of research
such as stress, drug addiction, trauma, and other disease states.

6 LIMITATIONS

NeuRegenerate is designed based on the current key neuro-
science postulation that fragmentation and reduction in fiber
density (vessel thickness) are significant features of change in
fiber morphology. Specifically, to avoid meaningless structures
and artifacts in the prediction outcome, the hallucination loss
inhibits how much change is allowed when transitioning from
young to old or vice-versa. Likewise, the intermediate volume
reconstruction method in neuroMorph caters only to grow-
ing/shrinking and splitting/merging of vessel-like neurites.
This limits NeuRegenerate scope to visualize and hypothesize
supplemental fiber morphology variations beyond thickness,
decay, and connective growth (for instance, branching) that
could possibly occur in other neurological systems. Moreover,
the conservative nature of the hallucination loss poses an inter-
esting dilemma: is the network hindered from reconstructing
previously unobserved changes that can be discovered using
NeuRegenerate? Notwithstanding that relaxing this loss may
make it difficult to distinguish true from hallucinated features.
Thus, expanding this work scope for additional morphological
changes will require designing a more novel hallucination
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loss and a more extensive intermediate volume reconstruction
algorithm for neuroMorph.

The lack of real biological groundtruth correspondence was
a challenge in designing our framework. While NeuRegener-
ate provides great visualizations of neuronal structures, it is
unintended for diagnosis or ground truth. All findings using
NeuRegenerate requires verification by domain experts using
either evaluation metrics that can estimate the plausibility or
through additional medical experiments. Coupled with the
visualization tools, this framework can greatly aid researchers
in developing hypotheses. If ground truth is made available,
NeuRegenerate can be extended to become better suited for di-
agnosis, however, currently stage ground truth is unavailable.

7 CONCLUSION AND FUTURE WORK

We have presented NeuRegenerate, a novel framework that
predicts and visualizes the health and density of neuronal
fibers, across discrete age timepoints, for an individual speci-
men. Advances in connectomics research have allowed neuro-
scientists to gain insights into neuron morphology and connec-
tivity and have been instrumental in furthering the understand-
ing of human brain diseases. Our work helps neuroscientists
visualize prediction of fiber health (future or past) by providing
a necessary within-subject estimation of morphological changes
in projections. NeuRegenerate consists of a deep-learning com-
ponent (neuReGANerator) that predicts the translation of fiber
structure across trained discrete age-timepoints, and two visu-
alization modes (neuroCompare and neuroMorph) to study the
changes between the input and reconstructed volumes.

In addition to the extensions described in Sec. 6, we plan
to design a single network that can simultaneously learn
fiber reconstructions across multiple brain regions, for each
age timepoint. Moreover, neuReGANerator focus has been on
neurite reconstructions, however, the loss of cell bodies is a
known feature in aging and cognitive decline. Thus, we plan to
extend neuReGANerator to predict cell-body count change and
reconstruct predictions for the age timepoints.
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